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In this work, a model was proposed for predicting heat capacity of gas (Cp) for diverse organic com-
pounds including aromatic, acyclic aliphatic hydrocarbons, ketones and acetates at variable tempera-
tures, range from 50 to 1500 K. At the same time, a new norm descriptor based on molecular
characteristic matrix was developed. Validation results showed that this norm-index-based model had
satisfactory performance for predicting C,, at various temperatures with high squared correlation coef-
ficient R? of 0.9976 and high squared relation coefficient of the cross validation Q? of 0.9976. The results
of external validation, thraining and R?es;, were 0.9977 and 0.9970, respectively. Meanwhile, Y-random-
ization test and mean absolute errors test could indicate the stability and accuracy of this model. In
addition, comparison results could further demonstrate the high predictive performance and the wide
applicability domain of this work; and the big strength of this work is that it could predict gas heat
capacity down to 50 K.

Norm index

© 2017 Published by Elsevier B.V.

1. Introduction

Heat capacity (Cp) is considered as a measure of how well the
substance stores heat [1]. Being as a crucial property in thermo-
dynamics [2], Cp values in the gaseous phase at variable tempera-
tures are extremely important for the estimation of the entropy at
any other temperature [3]. Moreover, heat capacities of gas have
often been applied to the study of solute—solvent interactions
through the heat capacities of solvation [4]. Though lots of exper-
imental data of heat capacity of gas for many common organic
compounds at 298.15 K or at different temperature ranges (very
limited) could be desirable, due to the increased discovery or
synthesis of new chemical compounds, such data would be usually
in urgent need, especially the temperature-dependent Cp values
and their availability [1].

Quantitative structure—property relationship (QSPR) is an effi-
cient tool in the correlation and prediction of diverse thermody-
namic properties of compounds from their structures. For instance,
Toropov et al. modeled the Gibbs free energy [5], alkane enthalpies
[6] and enthalpies of formation for organometallic compounds [7]
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by means of QSPR at constant temperature. Also, it is necessary to
predict the heat capacity of gas especially at broad range of tem-
peratures of chemical compounds by using theoretical approaches,
and several models based on QSPR have been successfully estab-
lished to calculate the values of gas heat capacity. For example, Xue
et al. [1] utilized multiple linear regression, radial basis function
networks and support vector machine methods to develop QSPR
models for predicting gas heat capacity of 182 compounds at
298.15 K. Khajeh et al. [8] established a QSPR model for the pre-
diction of heat capacity of gas covered a diverse set of 1174 com-
pounds at 298.15 K by utilizing nonlinear genetic function
approximation and adaptive neuro-fuzzy inference system method.
Though the work of Xue et al. [1] and Khajeh et al. [8] could give
satisfying prediction results, both works predicted the values of
heat capacity of gas only at 298.15 K.

As a matter of fact, heat capacity of gas is usually strongly
affected by the temperature. Hence, it is more important and
valuable to predict heat capacity of gas at different temperatures.
Group contribution methods have often been widely utilized for C,
prediction at various temperatures, such as the first-order group
contribution method [9,10]_ENREF_8, the second-order method
[11—13]_ENREF_10_ENREF_10. Recently, Mondejar et al. [14] pre-
dicted ideal gas Cp of organic fluids containing chlorine and/or
fluorine at 300 K and 400 K using two group contribution
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approaches. Although these group contribution methods are sim-
ple and able to be widely used, these methods could not be utilized
to predict the heat capacity of gas of compounds that contained the
groups for which contributions were unavailable. Also, many other
methods have been reported for predicting gas C, at different
temperatures [4,15—18], like the density functional theory (DFT) in
quantum chemistry combined with statistical thermodynamic
theory [16] and approximating correlation [17]. Based on DFT and
statistical thermodynamic, Cervinka et al. [4] proposed a new
wavenumber and bond-dependent set of scale factors for calcula-
tion of ideal-gas C, and entropies for a set of 93 rigid molecules.
Lastovka et al. [19] proposed a similarity variable and then devel-
oped correlations with the values of heat capacity of gas. Although,
this model was established based on large data set and had good
accuracy, it had too many fitting parameters. Very recently, Bruel
et al. [2] developed a model for predicting heat capacity of gas at
different temperature ranges. Though high prediction accuracy had
been obtained, in their work, yet only 14 compounds were involved
and its samples set was too small, therefore, it might be difficult for
their model to be further stretched for the efficient prediction of
other kinds of chemicals.

Our previous works suggested that molecular characteristic
matrix-based norm descriptors proposed in our group, could
effectively describe the structure-property relationship of organics
and, based on which some QSPR models had been successfully
developed for predicting aquatic toxicity [20], affinity of 5-HTqp
receptor ligands [21] and solubility of fullerene Cgg in organic sol-
vents [22]. These results demonstrated that the method proposed
by our group had high accuracy and might be widely used.

Therefore, in order to predict the heat capacity of gas for a
diverse set of organic compounds at a wide temperature range, a
model based on various chemical structure information was pro-
posed. Also, a new molecular characteristic matrix norm descriptor
based on the optimized structure of diverse organic compounds
was developed in this work. Meanwhile, leave-ten-out cross vali-
dation and Y-randomization approaches were used to evaluate the
accuracy and stability of this model.

2. Method
2.1. Data of heat capacity of gas

A data set of 2028 heat capacity data points at constant pressure
under a wide temperature range (50—1500 K) for 114 diverse
organic compounds (shown as in Supplementary Material Table S1)
was collected from the gas phase thermochemistry data of the
National Institute of Standards and Technology (NIST) Standard
Reference Database 69: NIST Chemistry WebBook [23]. The mo-
lecular weight range of these organic compounds was from 86.13 to
398.45; organic structures involved in this work included aromatic
hydrocarbons, acyclic aliphatic hydrocarbons, ketones and acetates.
Here, it should be noticed that experimental heat capacity values
obtained through direct (calorimetric) or indirect measurements
(for example speed-of-sound measurements) are very limited. And
most of the heat capacity data could be obtained by methods of
statistical thermodynamics using spectral data [24], especially for
aromatic aliphatic hydrocarbons. Therefore, in this work, gas heat
capacity values recommended by NIST were used. Some of the gas
heat capacity values could be verified as experimental values, and
other gas heat capacity values recommended by NIST were calcu-
lated by reliable methods.

2.2. Model proposed

In order to obtain the most stable molecular structures, the

HyperChem 7.0 Software [25] was used to optimize the structure of
chemicals in the data set. In the process of optimization, each
molecule in the data set was energetically minimized using ab initio
method in quantum chemistry at STO-3G level.

In this work, based on the molecular chemical graphs, the
adjacent matrix and a matrix deduced from Euclidean spatial dis-
tance of the molecules were firstly generated, in which only the
route and distance between atom and atom were taken into ac-
count, and the type of atom and bond had been neglected.

The two matrices (Mp, m= (a, d)) mentioned above were
described as following:

Ma = (aj)

a;=1  atomiandj are adjacent (1)

1
My = |d;; di = Tii
ij ij

0 otherwise

i#j
(2)

r;j is the Euclidean spatial distance between atom i and j

In order to distinguish atomic types, a property matrix (Mg) was
further defined, and some atoms' basic properties as van der Waals
radius, atom weight, molecular weight and atom charge were
distinctively included.

ai T
Mg = {amr] (3)

ac

ai = atomic intension = van der Waals radius x atom weight

(4)
amr = atomic mass ratio = atom weight/molecular weight  (5)

ac = atom charge (6)

Here, the descriptor
ai = atomic intension = van der Waals radius x atom weight,  was
newly proposed in this work.

Based on the above matrices (M;, Mg and Mg), three new
matrices (My, x= (1, 2, 3)) were produced by the adjustment as
follows:

My = {[Mg(:,n),Mm]} ~ m=(a, d)yn=(1,2,3) (7)

M, — [ME( . n) x Mg( :,n)T] +Mm}
(1,2,3) (8)

m=(a, d);n

M; = {[ME( 1) x Mg( ;7n)T]. x Mm}
=(1,2,3) (9)

m=(a, d);n

Then, the descriptors were calculated based on My, M, and/or M3
by using norm indexes-norm (M, 1) and norm (M, fro), which were
defined as follows:

norm(M,l)=max{2|mi1|,2|m,-2\, ...... ,Z\mlﬂ} (10)

norm(M, fro) = (ZZm?j)1é (11)

Here, norm (M, fro) is the Frobenius norm of the M matrix.
Aimed at simplifying the model, only the most determinative
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