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a b s t r a c t

The thermodynamic conditions for isothermal or isobaric two-phase boundaries of fluid mixtures are
expressed as sets of first-order ordinary differential equations. In contrast to the GibbseKonovalov
equations, the new equations use molar densities instead of mole fractions. The resulting formalism is
applicable to multicomponent mixtures, well-suited for machine calculations, and allows a very rapid
calculation of phase diagrams.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1881, 125 years ago, D. Konovalov proved that, in phase dia-
grams of binary mixtures, azeotropes lie at extrema of the phase
boundary curves [1,2].1 Gibbs extended Konovalov's proof to
multicomponent mixtures and derived sets of differential equa-
tions for two-phase equilibria, which later became known as
“coexistence equations” or GibbseKonovalov equations [3]. The
equations for isothermal phase boundaries of a binary mixture are
given here as an example [4,5]:

dp
dx01

¼ � x
00
1 � x01

x02
h
x
00
1

�
V 0
1 � V

00
1

�
þ x

00
2

�
V 0
2 � V

00
2

�i�vm01
vx1

�
(1)

dp
dx

00
1
¼ � x

00
1 � x01

x
00
2

h
x01
�
V 0
1 � V

00
1

�
þ x02

�
V 0
2 � V

00
2

�i
 
vm

00
1

vx1

!
(2)

Here p denotes the pressure, xai the mole fraction, Va
i the partial

molar volume, and mai the chemical potential of component i in the
phase a¼0;00 . Analogous equations exist for isobaric phase equilibria
or for phase boundaries at fixed composition (isopleths).

The textbook of Haase (1956) [6] contains a stringent formula-
tion of GibbseKonovalov equations for multicomponent mixtures

with the use of determinants.
Nowadays, however, these equations seem to be missing from

most textbooks of thermodynamics, at least in the field of fluid
thermodynamics. They do appear, although seldom, in journal ar-
ticles; examples are the works of Goodman et al. [7], who discuss
features of metallurgical phase diagrams, of Deiters [8] on double
retrograde behavior, or of Serafimov et al. [9] on azeotropy in
multicomponent mixtures. In these publications, however, the
GibbseKonovalov equations are merely used for proving thermo-
dynamic theorems, but not for the calculation of phase diagrams.

Why is this so? There are several reasons:

� The GibbseKonovalov equations have complicated structures
and can be solveddexcept for a few special casesdnumerically
only. At the end of the 19th Century, before the advent of elec-
tronic computing devices, solving these equations was imprac-
tical. Therefore thermodynamicists of the early 20th Century
preferred using Raoult's law and its extensions (activity/fugacity
coefficient models) for the calculation of vaporeliquid phase
equilibria. When electronic computers became available around
1960, the GibbseKonovalov equations were remembered at best
as parts of mathematical proofs, but not as practical computa-
tional methods.

� The GibbseKonovalov equations constitute systems of nonlinear
first-order ordinary differential equationsdand for the inte-
gration of such equations, an initial state must be known. For
vaporeliquid equilibria of mixtures, the vaporeliquid equilibria
of the pure components are natural starting points.

E-mail address: ulrich.deiters@uni-koeln.de.
1 These publications appeared in a German journal, hence his name was trans-

literated there as “Konowalow”.

Contents lists available at ScienceDirect

Fluid Phase Equilibria

journal homepage: www.elsevier .com/locate /fluid

http://dx.doi.org/10.1016/j.fluid.2016.04.014
0378-3812/© 2016 Elsevier B.V. All rights reserved.

Fluid Phase Equilibria xxx (2016) 1e10

Please cite this article in press as: U.K. Deiters, Differential equations for the calculation of fluid phase equilibria, Fluid Phase Equilibria (2016),
http://dx.doi.org/10.1016/j.fluid.2016.04.014

Delta:1_given name
mailto:ulrich.deiters@uni-koeln.de
www.sciencedirect.com/science/journal/03783812
www.elsevier.com/locate/fluid
http://dx.doi.org/10.1016/j.fluid.2016.04.014
http://dx.doi.org/10.1016/j.fluid.2016.04.014
http://dx.doi.org/10.1016/j.fluid.2016.04.014


Liquideliquid equilibria, however, do not occur in pure fluids,
and therefore they cannot be treated as initial-value problems.

Alternatively, it might be possible to formulate the conditions of
phase equilibrium as a set of partial differential equations. But
because of the required mathematical effort and the topological
complexity of phase envelopes, this approach has, to our
knowledge, never been pursued.

� Moreover, the partial molar volumes and the chemical poten-
tials in Eqs. (1) and (2) are functions of composition, pressure,
and temperature; they need to be recalculated at every step of
the integration of the differential equation, and this usually
necessitates the calculation of the densitydwhich means solv-
ing a nonlinear equation within the integration algorithm. This
would not only slow down the computation, but might also
affect its numerical stability.

Because of these points, calculations of fluid phase equilibria
have usually been performed with methods based on algebraic
equations since more than 100 years.

Traditionally, such methods use the Gibbs or Helmholtz energy
as central thermodynamic potential, and mole fractions and pres-
sure or molar volume, respectively, as thermodynamic coordinates.
It could be shown recently, however, that the use of the Helmholtz
energy density J ≡ A/V as central thermodynamic potential and
densities ri ≡ ni/V (ni: amount of substance of component i) offers
several advantages [10].

Therefore is seems worthwhile to revisit the GibbseKonovalov
equations and to rewrite them in terms of density coordinates.

2. Theory

2.1. The GibbseKonovalov equations

For the readers' convenience, we briefly report the isothermal
GibbseKonovalov equations for N-component mixtures (N � 2).

Starting point is the observation that the total differential of the
chemical potential mj(p,T,x) of a component j as a function of the
pressure p, the temperature T, and the vector of mole fractions x can
be written as
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Sj and Vj are the partial molar entropy and partial molar volume,
respectively, of component j,
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where nj denotes the amount of substance of component j.
Along the coexistence curve of two phases, denoted here as 0 and

00, the changes of the chemical potentials must be equal,
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j ; j ¼ 1;…;N: (5)

Substituting Eq. (3) and sorting the terms leads to
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For an isothermal phase diagram, dT ¼ 0, and therefore Eq. (3),
after division by dp, represents a set of linear equations in the de-
rivatives dx0j=dp and dx

00
j =dp. Lengthy, but straightforward algebra

and application of the GibbseDuhem equation (see Appendix A)
lead to
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and a second equation in which the phases are switched.
For a binary mixturedbut only heredthe sums on the left hand

side have merely one term. Furthermore,
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and thus the first of the GibbseKonovalov equations, Eq. (1), is
recovered. Eq. (2) is obtained in a similar fashion.

The GibbseKonovalov equations for an isobaric equilibrium
curve would be obtained by setting dp ¼ 0 instead of dT in Eq. (6).

In the general multicomponent case, Eq. (7) provides one
equation for dx0/dp only. But this is sufficient: According to Gibbs'
phase rule, for an isothermal N-component two-phase system, N�2
mole fractions can be set to fixed values. For a ternary mixture, for
example, one might set x02 to a constant value by specifying
dx02=dp ¼ 0, use Eq. (7) to determine dx01=dp, and then Eq. (6) to
determine the dx

00
1=dp and dx

00
2=dp. Thus all relevant derivatives

would be known, and the equilibrium curve could be determined
by integrating the resulting system of differential equations.

This approach, however, would require the calculation of all
partial molar volumes at every step. As these are volume de-
rivatives at constant pressure, but equations of state for fluids are
usually functions of density, the numerical effort for the compu-
tation of the partial molar volumes would be rather significant.

2.2. Density-based formulation

The central thermodynamic potential in the density-based
formulation of thermodynamics [10] is the Helmholtz energy
density J,

J≡
A
V
; (9)

where A denotes the Helmholtz energy and V the total volume. J
has the temperature T and the densities ri as its natural variables.
The latter are defined by

ri≡
ni
V
: (10)

As the ni can be regarded as the independent variables and V as a
constant, this approach is sometimes called “isochoric thermody-
namics”. The ri are related to the mole fractions and the molar
volume by

ri ¼
xi
Vm

; r ¼
XN
i¼1
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1
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r
; (11)
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