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a b s t r a c t

We consider project scheduling problems subject to general temporal constraints, where the utilization
of a set of renewable resources has to be smoothed over a prescribed planning horizon. In particular, we
consider the classical resource leveling problem, where the variation in resource utilization during pro-
ject execution is to be minimized, and the so-called ‘‘overload problem’’, where costs are incurred if a
given resource-utilization threshold is exceeded. For both problems, we present new mixed-integer lin-
ear model formulations and domain-reducing preprocessing techniques. In order to strengthen the mod-
els, lower and upper bounds for resource requirements at particular points in time, as well as effective
cutting planes, are outlined. We use CPLEX 12.1 to solve medium-scale instances, as well as instances
of the well-known test set devised by Kolisch et al. (1999). Instances with up to 50 activities and tight
project deadlines are solved to optimality for the first time.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

A project is a unique and temporary endeavor that can be sub-
divided into various activities that require time and renewable re-
sources, such as machines, equipment, or manpower, for their
execution. Usually, projects involve general temporal constraints
among activities resulting from technological or organizational
restrictions. Project scheduling consists of determining start times
for all activities such that temporal and/or resource constraints are
satisfied and some objective is optimized (see e.g. Józefowska and
We�glarz, 2006).

Resource leveling problems (RLPs) arise whenever it is expedi-
ent to reduce the fluctuations in patterns of resource utilizations
over time, while maintaining compliance with a prescribed project
completion time. In particular, in cases where even slight varia-
tions in resource needs represent financial burden or heightened
risks of accidents, a resource leveling approach helps to schedule
the project activities such that the resource utilization will be as
smooth as possible over the entire planning horizon (cf. Demeu-
lemeester and Herroelen, 2002). Under resource leveling, no re-
source limits are typically imposed. Therefore, only the time lags
between individual activities form the project constraints.

Resource leveling has received little attention in the academic
literature. A bunch of instances with 30 activities (cf. Kolisch
et al., 1999) remain to be solved optimally. In order to compensate
for that dearth of research, we consider exact methods for the
‘‘classical resource leveling problem’’, where variations in resource

utilizations within the project duration are to be minimized (cf.
Burgess and Killebrew, 1962). In addition, we study the ‘‘overload
problem’’, where costs are incurred if either a given supply of some
renewable resources or a threshold for the resource utilization is
exceeded (cf. Easa, 1989). New mixed-integer linear models and
domain-reducing preprocessing techniques are devised for both
problems. We obtain promising results on the well-known test in-
stances of Kolisch et al. (1999) using CPLEX 12.1. For the first time,
all problem instances with 30 activities are solved to optimality
with respect to the minimum project duration.

In Section 2, we formally describe the resource leveling problem
using two different objective functions and present its mathemat-
ical background. In Section 3, we investigate an interesting applica-
tion of resource leveling that substantiates both the objective
functions we have proposed and the structuring of the problem in-
stances we have used in our experimental performance analysis.
Section 4 is devoted to a literature review on exact solution meth-
ods for resource leveling, where we sketch the most common ap-
proaches and present known mathematical model formulations.
Based on those models, we proceed to describe methods for linear-
izing the corresponding objective functions and improving the
quality of the resulting formulations in terms of computation time
and solution gap (cf. Section 5). The results of a comprehensive
performance analysis are given in Section 6. Finally, conclusions
are presented in Section 7.

2. Problem description

In the remainder of this paper, we consider projects specified
by activity-on-node networks N = (V, A; d), where V is the set of
vertices and A is the set of arcs with weight d. Vertex set
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V :¼ {0, 1, . . . , n, n + 1} consists of n P 1 activities, 1, . . . , n, that
have to be carried out without interruption, and two fictitious
activities, 0 and n + 1, that represent the beginning and completion
of the underlying project, respectively. Each activity has to be
started no earlier than the project beginning, and must be com-
pleted by project termination.

We denote the start time of activity i 2 V by Si and assume that
every project begins at time zero, i.e. S0 :¼ 0. Then, Sn+1 equals the
project duration. If activity j cannot be started earlier than
dmin

ij 2 ZP0 time units after activity i (minimum time lag), i.e.
Sj � Si P dmin

ij , we introduce an arc hi, ji having weight dij :¼ dmin
ij

into network N. In the event that activity j can be begun as soon
as activity i has been concluded, i.e. dmin

ij ¼ pi, the minimum time
lag is referred to as a ‘‘precedence constraint’’. If activity j must
be started no later than dmax

ij 2 ZP0 time units after activity i (max-
imum time lag), i.e. Sj � Si 6 dmax

ij , we introduce a backward arc hj, ii
with weight dji :¼ �dmax

ij . The resulting arc set A contains at most
jVjjV � 1j arcs representing the temporal constraints Sj � Si P dij

among the start times of activities i, j 2 V.
A sequence of start times S = (S0, S1, . . . , Sn+1), where Si P 0,

i 2 V, and S0 = 0, is termed a ‘‘schedule’’. A schedule is said to be fea-
sible if it satisfies all temporal constraints of the project given by
minimum and maximum time lags. The set of all feasible schedules
is denoted by ST . Let �d P 0 be a prescribed maximum project dura-
tion (i.e. a project-completion deadline). The problem of finding an
optimal (feasible) schedule for some objective function
f : Rnþ2

P0 ! R to be minimized may be formulated as follows:

Minimize f ðSÞ
subject to Sj � Si P dij hi; ji 2 A

S0 ¼ 0
Snþ1 6

�d

Si P 0 i 2 V :

9>>>>>>=>>>>>>;
ð1Þ

For an activity i 2 V, inequality Si P 0 is already implied by S0 :¼ 0
and the assumption that no activity can be started prior to the pro-
ject beginning. Furthermore, since we assume in the following that
network N contains an arc hn + 1, 0i having weight dnþ1;0 :¼ ��d in
order to ensure compliance with the prescribed project deadline,
inequality Snþ1 6

�d also becomes redundant. As has been shown
by Bartusch et al. (1988), the feasible region ST of problem (1) is
non-empty, iff N contains no cycle of positive length, which can
be checked in polynomial time (cf. Ahuja et al., 1993, Section 5.5).

Due to the prescribed project deadline, the set of feasible start
times of activity i 2 V forms a proper time window [ESi, LSi], where
ESi is the earliest and LSi the latest start time of activity i with respect
to the given temporal constraints. By definition, ES0 = LS0 :¼ 0. For a
specified activity i 2 Vn{0}, both the earliest start time, ESi, which
equals the length of a longest path from node 0 to node i, and the lat-
est start time, LSi, which equals the negative of the longest path
length from node i to node 0, can be determined by applying some
label-correcting algorithm (see e.g. Ahuja et al., 1993, Section 5.4).
The total float, TFi :¼ LSi � ESi, i 2 V, is the maximum length of time,
by which the start of activity i may be delayed beyond its earliest
start time, without causing project completion to be delayed beyond
the final deadline given by �d. An activity i is termed ‘‘critical’’ if a de-
lay in its start will cause a delay in completing the entire project. The
total float is therefore zero for critical activities, and has some posi-
tive value for non-critical activities.

Let R be the set of renewable resources required for carrying
out the project activities. Every activity i 2 V has a given processing
time pi 2 ZP0, and requires rik 2 ZP0 units of resource k 2 R taken
up by processing activity i, commencing with its start time Si

(inclusively), through to its completion time Si + pi (exclusively).
An activity i is referred to as ‘‘event’’ if pi = 0; otherwise, it is re-
garded as a real activity. Every real activity i is presumed to be

performed during the half-open time interval [Si, Si + pi[. In case
of the fictitious activities, we set p0 = pn+1 :¼ 0 and r0k = rn+1,k :¼ 0
for all k 2 R. Given some schedule S, the set of (real) activities in
progress at time t, which is also termed the ‘‘active set’’, is given
by AðS; tÞ :¼ fi 2 V jSi 6 t < Si þ pig. Thus, rkðS; tÞ :¼

P
i2AðS;tÞrik rep-

resents the total amount of resource k 2 R required for those activ-
ities in progress at time t. The resource profiles rkðS; �Þ : ½0; �d� ! RP0

are step functions continuous from the right at their jump points.
If the resources necessary to carry out the activities involved

should be distributed evenly over the time horizon, we speak of re-
source leveling. Different objective functions are considered in the
literature (see e.g. Neumann and Zimmermann, 1999, 2000),
depending on how variations in resource utilizations are mea-
sured. In what follows, we consider two resource leveling functions
having broad areas of application.

In practice, companies often want to realize smooth resource
profiles for a given project duration, and aim at penalizing high re-
source utilizations more than low resource utilizations. Let ck P 0
be the cost incurred per unit of resource k 2 R, and per time unit.
The ‘‘classical resource leveling objective function’’ will then be gi-
ven by

f ðSÞ :¼
P
k2R

ck

Z
t2½0;�d�

r2
kðS; tÞ dt: ðRL1Þ

(RL1) represents the total squared utilization cost for a given sche-
dule S (cf. Burgess and Killebrew, 1962; Harris, 1990). A possible
application can be found in make-to-order manufacturing opera-
tions, where an even-workload distribution of resources is required
(cf. Ballestin et al., 2007). Moreover, (RL1) may be used for avoiding
large deviations from prescribed resource-utilization thresholds
Yk; k 2 R, since the conditionsP

k2R
ck
R

t2½0;�d� ðrkðS; tÞ � YkÞ2dt

¼
P
k2R

ck
R

t2½0;�d� rkðS; tÞ2dt � 2 Yk
P
i2V

rik pi þ �d Y2
k

� �
¼
P
k2R

ck
R

t2½0;�d� r
2
kðS; tÞdt þ K

are satisfied with some K 2 R.
Employers are usually required to pay overtime premiums to

employees who work more than the standard hours. Additional
costs for covering the positive deviations from the desired resource
utilizations Yk; k 2 R, will therefore be incurred (cf. Easa, 1989;
Bandelloni et al., 1994). In order to take this option into account,
we consider the ‘‘total overload cost function’’

f ðSÞ :¼
P
k2R

ck

Z
t2½0;�d�
ðrkðS; tÞ � YkÞþdt: ðRL2Þ

In case no thresholds Yk, e.g. the standard weekly hours, have been
prescribed, Yk may be chosen equal to the (rounded) average re-
source utilizations, i.e. Yk :¼

P
i2Vdrik pi=

�de.
If time t is discrete, the integrals appearing in (RL1) and (RL2)

could be replaced by summations. As has been shown by Neumann
et al. (2003), problem (1) is NP-hard in the strong sense in case of
both resource leveling variants. However, both objective functions
and the set of feasible solutions have nice properties that can be
exploited along the way to an optimal solution. Firstly, the feasible
region represents a convex polytope of dimension n + 1 if network
N contains neither any redundant time lags nor cycles of length
zero. An algorithm for eliminating redundant arcs may be found
in Habib et al. (1993) or Gather et al. (2011). The activities of some
cycle of length zero will be strictly interlinked and may be replaced
by a single node (cf. Neumann et al., 2003). Furthermore, every
binding temporal constraint, Sj = Si + dij, i, j 2 V, defines a facet of
the feasible region (cf. Hagmayer, 2006). Secondly, objective
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