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Abstract—1In this brief, a novel tracking differentiator (TD)
based on discrete time optimal control (DTOC) is presented.
In particular, using the state back-stepping method, a DTOC
law for a discrete-time, double-integral system is determined by
linearized criterion, which equips the TD with a simple structure.
The analysis of the proposed TD reveals its filtering mechanism.
Simulation results show that it performs well in signal tracking
and differentiation acquisition, and reduces the computational
resources needed. Experiments conducted on the speed and
position detection system for a maglev train demonstrate that the
proposed TD group, with moving average algorithm, can filter
noises, amend distortion signals effectively, and compensate for
phase delays when the train is passing over track joints.

Index Terms— Discrete time, filter, linearized criterion, maglev
train, phase delay, time optimal control (TOC), tracking differ-
entiator (TD).

I. INTRODUCTION

HE differentiation of a given signal in real time is a

well known yet challenging problem in control engi-
neering and theory [1], [2]. The proportional—integral—
derivative (PID) control law developed in the last century
still plays an essential role in modern control engineering
practice [3], [4]. However, since derivative signals are prone
to corruption by noise and derivative control is usually not
physically implementable, the PID control is usually degraded
to PI control [5]. To deal with this, researchers have proposed
many different approaches for differentiator design, includ-
ing those based on a high-gain observer [6], a linear time-
derivative tracker [7], a super-twisting second-order sliding
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mode algorithm [8], robust exact differentiation [9], [10],
a finite time convergent differentiator [11], and so on.

Initially proposed by Han [12], a noise-tolerant time optimal
control (TOC)-based tracking differentiator (TD) allows one
to avoid a setpoint jump in the emerging active disturbance
rejection controller. The advantage of this TD is that it sets a
weak condition on the stability of the systems to be constructed
for TD and requires a weak condition on the input. In addition,
it also has the advantage of maintaining a greater level of
smoothness compared to the chattering problem encountered
by sliding mode-based differentiators [13]. The following
presents a brief outline for the construction of this TD.

The double-integral system is defined as

X1 = x2,

ey

Xo=u, |ul<r

where r is a constant. Note that, depending on the physical
limitations of each application, the parameter r can be selected
accordingly to speed up or slow down the transient profile. The
resulting feedback control law that drives the state from any
initial point to the origin in the shortest time is [14], [15]

u = —rsign (x1 -0+ x2|x2|) 2)
2r

where v is the desired value for x;. The switching curve
function is T'(xy, x2) = x1 + (x2]x2]/2r). Using this principle,
we can obtain the desired trajectory and its derivative by
solving the following differential equations:

01 =02,

—rsign (1)1 -0+

02

vzlvzl) (3)
2r

where v is the desired trajectory and v; is its derivative.

With the developments in computer control technology,
most control algorithms are now implemented in the discrete
time domain. Direct digitization of a continuous TOC solution
of (2) is problematic in practice because of the high-frequency
chattering of the control signals [16]. This problem can be
addressed by using a discrete-time solution for a discrete
double-integral system vy (k + 1) = v1(k) + hva(k), va(k +
1) = va(k) + hu(k), lu(k)| < r to obtain u = Fhan(v; (k) —
v(k), v2(k), ro, ho), where h is the sampling period and r¢ and
ho are the controller parameters [12], [16].

However, the discrete TOC (DTOC) law (Fhan) of the
TD is determined by comparing the position of the initial
state with the isochronic region obtained through nonlinear
boundary transformation. This makes the structure of a TD to
be complex with nonlinear calculations, including square root
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calculations. In this brief, the mathematical derivation of a new
closed-form DTOC law for discrete form of the system in (1) is
presented. Unlike the control law Fhan, the DTOC law is based
on a linearized criterion that depends upon the position of the
initial state point on the phase plane. In doing so, the new
control law has a simpler structure that is much easier to
be applied in practical engineering scenarios. Experiments are
carried out on position signal processing for position sensing in
the speed and position detection system of a maglev train [17],
[18]. In practice, the signals from the position sensor may be
aberrant due to the existence of track joints, which leads to low
efficiency of the traction system or even safety misadventures.
The proposed TD can be used to construct a TD group with a
moving average algorithm that filters the noises, compensates
for phase delays, and amends distortion signals when the train
is passing over the track joints.

This brief is organized as follows: the new DTOC law is
proposed in Section II. The structure of the TD and its filtering
characteristic are discussed in Section III. In Section IV,
numerical simulation results are presented to compare the
performance of signal tracking, differentiation acquisition and
the computational resources needed in field-programmable
gate array (FPGA) application between the control law Fhan
and the proposed one, followed by experimental results on
position signal processing for the speed and position detection
system of a maglev train. Finally, Section V concludes this
brief.

II. DISCRETE TIME OPTIMAL CONTROL LAW

Consider a discrete-time double-integral system

x(k+ 1) = Ax(k) + Bu(k),

=0 1) =)

and x(k) = [x1(k), x2(k)]”. The objective here is to derive
a TOC law directly in discrete time domain. The problem is
defined as follows.

DTOC Law: Given system (4) and its initial state x(0),
determine the control signal sequence, u(0), u(1), ..., u(k),
such that the state x(k) is driven back to the origin in a
minimum and finite number of steps, subject to the constraint
of |u(k)] < r. That is, finding u(k*), |u(k)| < r, such that
k* = min{k|x(k + 1) = 0}.

In bang-bang control, the control signal switches between its
two extreme values (u = +r or u = —r) around the switching
curve, and it switches the sign instantaneously after reaching
the switching curve. For a discrete time system, however,
the process of sign-switching occurs within a sampling period
h. During that process, the corresponding state sequences
remain in a certain region (denoted as Q) near the switching
curve. The control signals for the state sequences in the
region Q are determined by a linearized criterion. The control
signal varies from a certain positive (negative) value to a
negative (positive) value when control signal u passes from
one side of the region € to the other. All initial state sequences

lu(k)| <r “)

where
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outside region Q when the control signal takes an extreme
value, i.e., u = +r or u = —r, are located at certain curves,
referred to as boundary curves I'y and I'p. Region Q is
surrounded by these boundary curves. In addition, when the
value of the control signal varies in [—r, r], there exists a state
that corresponds to u = 0. All states that correspond to u = 0
constitute another curve, which is referred to as the control
characteristic curve I'¢.

In deriving the DTOC law, one must find the control signal
sequence for any initial state point x(0) € Q or x(0) & Q.
The whole task is divided into two parts as follows.

I: Determine the boundary curves of region Q and the
control characteristic curve based on the state back-stepping
approach, i.e., the representation of the initial condition x (0) =
[x1(0), x2(0)]7 in terms of A and r, from which the state can
be driven back to the origin in (k + 1) steps.

II: For any given initial condition x(0) € Q or x(0) € Q,
find the corresponding control signal sequence.

A. Determination of the Boundary Curves and Control
Characteristic Curve

For any initial state sequence, at least one admissible control
sequence exists, e.g., u(0), u(l), ..., u(k), that makes the
solution to (4) satisfy x(k+ 1) = 0. Under the initial condition
x(0), the solution is

k
x(k+1) = A 0) + > A* Bu(i) 5)
i=0
where x(0) = [x1(0),x2(0)]" and i = 0,1,2,...,k. It
manifests that x(k + 1) = 0. Therefore, the initial condition
satisfies

ko, 5
0= ()" Yo, ©)

i=0
Adopting the state back-stepping approach, discussed earlier,
we can determine the two boundary curves I'4 and I'p as well
as the control characteristic curve I'¢c as follows.

To obtain the boundary curve I' 4, we suppose that {ay} and
{a_} are the sets of any x(0) that can be driven back to the
origin with the control signal sequence u(i) = +r or u(i) =
—r,i =0,1,2,...,k. For this we specify that all initial states
in set {a4x} consist of FX and all initial states in set {a_j}
consist of T',.

For set {a4t}, the following result holds when the control
signal sequence takes on u(i) = +r according to (6):

k
(i + 1)A?
x(O):rZ( _h) ) (7
i=0
And we have x1(0) = rh®((k*/2) + (3k/2) + 1) and x,(0) =
—rh(k + 1) < 0. Simplifying x(0) into x and eliminating the
variable k results in the boundary curve FX, which is x| =
(x% /2r) — (1/2)hxy, where x; < 0. Similarly, we can get the
boundary curve I';: x| = —(x%/Zr)—(l/Z)hxz, where xp > 0.
Therefore, the entire boundary curve I'y (see Fig. 1) is
x2|x2]
2r

1
Tag:ix+ + Ehxz =0. ®)



Download English Version:

https://daneshyari.com/en/article/4768276

Download Persian Version:

https://daneshyari.com/article/4768276

Daneshyari.com


https://daneshyari.com/en/article/4768276
https://daneshyari.com/article/4768276
https://daneshyari.com

