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ABSTRACT

Determination of equilibrium composition for various multi-phase systems is important in the context of ther-
modynamics. Three methods are generally employed to calculate the gas/liquid equilibrium compositions;
namely, empirical graphs, correlations, and equations of state (EOSs). Empirical graphs and correlations are
simple and fast in terms of calculation procedure. Furthermore, using an EOS requires an initial guess, which is
usually obtained via empirical correlations. In this study, the gas-oil composition of 10 different crude oils
(20-40 °API) are experimentally determined by a gas chromatography (GC) apparatus within a temperature
range of 600-1212 °R and a pressure range of 14.7-7000 psi. A robust predictive model is then proposed to
estimate the equilibrium ratios (K;) of hydrocarbons and non-hydrocarbons. This model is generated by utilizing
the least squares support vector machine (LSSVM), while genetic algorithm (GA) is used for selection and op-
timization of hyper parameters (y and ¢®) that are embedded in the LSSVM model. The coefficient of de-
termination (R?) for the introduced model is 0.9991 and 0.9979 and the mean squared error (MSE) is 0.00074
and 0.044 for the hydrocarbons and non-hydrocarbons, respectively. The proposed model is simple to use and
exhibits high accuracy and reliability, which can have various applications in chemical and petroleum industries
where the thermodynamic equilibrium is maintained.

1. Introduction

each component are independent of the composition mixture. These
charts, which were presented by Gas Processors Society in 1957, are

Accurate knowledge of phase equilibria is vital in several en-
gineering processes. The empirical graphs, correlations, and equations
of state (EOSs) are three common techniques to obtain mixture char-
acteristics at equilibrium conditions [1-3].

An important parameter in gas-oil equilibrium predictions is the
equilibrium ratio. The equilibrium ratio of i component in a mixture
(K;) is defined as the ratio of the fraction of ith component in the gas
phase to that in the liquid phase, at vapor-liquid equilibrium, as shown
below.

Ki = —t

X; (€))
where y; and x; stand for the mole fraction of component i in the vapor
phase and the liquid phase, respectively.

Equilibrium ratios may reach unity at high pressures for some multi-
component mixtures, meaning that the concentration of ith component
is equal in both liquid and vapor phases [4].

The most common empirical graphs used in the phase equilibrium
calculations are Katz and Cox charts. In both charts, the K; values of
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available for paraffins (C;-Cqp), ethylene, propylene, nitrogen, and
carbon dioxide [4,5].

According to the Raoult’s law for hydrocarbons, a plot of K; values
versus pressure yields a straight line with a slope of unity at low
pressures (10-500 psi). The intercept of the line is dependent on the
molecular weight of the constituent. Katz et al. presented a series of
revised graphs for various hydrocarbons for a convergence pressure of
5000 psi [5]. They also showed that K; value of CO, can be estimated as
the square root of the product of K; values of methane and ethane [5].

Empirical correlations are the mathematical forms of the empirical
graphs. These correlations generally include convergence pressure and
a parameter representing the component as the variables [6]. For ex-
ample, standing et al. proposed an equation for estimating K; value of
Oklahoma oil/gas mixtures [7]. The K-value in Standing et al.’s Equa-
tion is assumed independent of the mixture composition. The correla-
tion is only accurate at low pressures (below 1000 psi) [7]. There is
another empirical correlation which is called the Wilson correlation.
This equation is commonly used for calculating K; values of paraffins.
The correlation is applicable over the pressure range of 14.7-500 psi as
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Nomenclature

Abbreviations

AARD  average absolute relative deviation
EOS Equation of State

FID flame ionization detector

GA Genetic algorithm

GC gas chromatography

GOR Gas to oil ratio (SCF/STB)

LSSVM least squares support vector machine
MSE mean squared error

QP Quadratic programming

RBF Radial basis function

SVM Support vector machine

TCD thermal conductivity detector

Variables

R, critical pressure of i component (psi)
w; acentric factor i component

T critical temperature i component (°R)
e the regression error

b k™ input data in the input space

Qe Lagrange multipliers

n space’s dimension

P Pressure (psia)

T Temperature (°R)

Yk output value for a specified input variable (i.e. x;)
b a term of bias

w the vector of weight

y the regularization parameter

o? kernel sample variance

listed below. This relationship results in accurate estimations where the
target pressure is below the critical pressures of components. The
modified Wilson equation is an extension of Wilson equation which can
be utilized at higher pressures up to sub-critical condition [8].

Support vector machine (SVM), which was first introduced by
Vapnik in 1998, is a type of machine learning approach [9]. SVM is an
efficient method that has been widely employed for solving different
complex cases in various engineering disciplines [10]. The main aim of
SVM is to convert the nonlinear input space into a high-dimensional
characteristic space and to obtain a hyper-plane through nonlinear
mapping [11]. This new methodology is based on the different statis-
tical concepts [12]. Quadratic programming (QP) is rather than re-
turning many local solutions like other regression methodologies, the
solution returned by SVM is global or even unique. This is because the
QP puzzle is a convex function [13]. This method might be time-con-
suming and difficult to be used as it should find a solution for a set of
nonlinear equations. Suykens and Vandewalle proposed the least square
support vector machine (LSSVM) method as an alternative form of the
SVM method [14-16]. LSSVM’s advantage over SVM is that it only
requires a group of linear calculations. This makes LSVVM computa-
tionally straightforward and easier.

This study uses the LSSVM model, as a generalization of traditional
SVM, to estimate the equilibrium ratios (K;) of hydrocarbons and non-
hydrocarbons. Genetic algorithm (GA) is implemented as an optimizer
scheme for adjustment of LSSVM variables. This work contains the
novelty of using the SVM approach to forecast the equilibrium ratios
(K;) of hydrocarbons and non-hydrocarbons. No records of such a
mathematical approach are found in the literature.

2. Experimental methodology

10 different oil samples from different Iranian oil reservoirs were
employed in our experiments. As a result, the values of gas to oil ratio
(GOR), bubble point pressure, and reservoir temperature were different.
To analyze the components of each live oil sample, 100 cm® of each oil
sample were flashed from the reservoir condition to the atmospheric
condition. The number of flashing steps strongly depends on the bubble
point pressure and GOR. As each oil sample has a unique GOR and
bubble point pressure, the starting pressure in the flash tests is different
for various oil samples. Hence, the flash steps are different for various
samples. After the flash process of the live oil sample, the compositional
analysis of produced gas phase and residual hydrocarbon liquid was
carried out via Agilent 7890 A gas chromatograph (GC). The range of
temperature of the stationary phase at operating conditions was
600-1212 °R. Using the flame ionization detector (FID), the relative
concentration of each component can be determined. In this work, the
thermal conductivity detector (TCD) was used to analyze the
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components up to C4 and the FID detector was employed to measure the
concentrations of heavier components, particularly Cs. .

3. Theory
3.1. LSSVM methodology

The methodology of LSSVM for nonlinear function approximation is
as below. A training data set is defined for generating the model. The
data set is defined as: {x.y,}, k = 1,2,...,.N, where x; € R" is the k™ input
data in the input space, y, € R is the output value for a specified input
variable (e.g., x;) and N represents the number of the training data
points. We consider the given inputs x; such as critical pressure (P,
psia), critical temperature (T, °R), acentric factor, gas oil ratio (GOR,
SCF/STB), temperature, and pressure. The output y is the equilibrium
ratio. Using the nonlinear function, ¢ (x), that maps the training set in
the input space to the high dimensional space, the regression paradigm
of Eq. (2) is created [17,18].

y=2z" @(x)+ b with .+ € R4b € Rp(-) € R" > R™,n, — o 2)

where « is the vector of weight and b represents a term of bias. The
superscript “n” stands for the data space’s dimension, and “n;” denotes
the unidentified characteristic space’s dimension [13]. When the
LSSVM modeling is performed, a new optimization problem is obtained.
The developed model deals with the optimization problem as presented

by Eq. (3) [17,18].

min

1 1 N
7 (we) = =l + = E e?
I (wre) 2// w 2}/ i

72,0, k=1

3

Eq. (4) is subject to the equality constraint shown by the following
expression:

Ve = /(»T¢(Xk) +b+e k=12,..N 4)

in which, y is the regularization parameter, which balances the com-
plexity of the model and the training error, and e, represents the re-
gression error [12].

To specify the solution to the restricted optimization puzzle, the
Lagrangian is constructed as illustrated below.

N
L(wbea) = 7 (we)— Y, ad"dp0x) + b+ e—y}
k=1

(5)

where ay are the Lagrange multipliers or support values. Solving this
equation requires differentiating Eq. (5).

Egs. (6)-(9) show the differentiated forms of Eq. (5) with respect to
«,b,ex, and oy, respectively [17,18].
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