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a b s t r a c t

We consider the natural combination of two strands of recent statistical research, i.e., that of decision
making with uncertain utility and that of Nonparametric Predictive Inference (NPI). In doing so we pres-
ent the idea of Nonparametric Predictive Utility Inference (NPUI), which is suggested as a possible strat-
egy for the problem of utility induction in cases of extremely vague prior information. An example of the
use of NPUI within a motivating sequential decision problem is also considered for two extreme selection
criteria, i.e., a rule that is based on an attitude of extreme pessimism and a rule that is based on an atti-
tude of extreme optimism.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Bayesian paradigm, e.g., de Finetti (1974), coupled with the
expected utility hypothesis of Bernoulli (1738), provides a trans-
parent and attractive methodology for solving problems of decision
making under uncertainty. In this approach preferences over a set
of possible decisions are reconstructed by taking into account both
the probability that each decision leads to a particular outcome,
and the relative preference for obtaining that outcome as mea-
sured by its utility value. Furthermore, if the outcome that pertains
from a particular decision depends on the value of an unknown
random quantity, then the probabilities associated with the set of
possible decision outcomes are typically assumed to be subject to
an assigned prior parametric distribution. Learning then occurs fol-
lowing observation of data that has a probabilistic dependence
with the unknown random quantity of interest, and the usual ‘pos-
terior is proportional to likelihood times prior’ of Bayes’ Theorem is
employed.

However, implicit within this theory (and hence necessary for
its application) is the assumption that the Decision Maker (DM)
knows her preferences, meaning that she can assign an appropriate
utility function (with domain the full set of all possible decision
outcomes) for use within the problem. In applications this is usu-
ally achieved by either assuming a fixed utility form, e.g., a loga-
rithmic utility function for monetary returns, or by selecting
specific utility values for particular and relevant decision

outcomes. As such, classical Bayesian subjective expected utility
theory does not permit inherent uncertainty in preferences over
decisions. It also does not allow the learning of utility and specifies
that the DM will never be surprised by the utility of a realized
outcome.

Nevertheless, not for all situations is the assumption of a known
preference relation over outcomes deserved, and often a DM may
instead need to learn her preferences through suitable experimen-
tation. Indeed, a DM may consider it inappropriate to assign a par-
ticular and fixed utility value for any outcome that is novel or
unfamiliar, choosing instead to only do so after direct experience
or exposure. Such cases of utility uncertainty motivate so-called
adaptive utility theory, e.g., Cyert and DeGroot (1975), Houlding
(2008), Houlding and Coolen (2007, 2011), which generalizes the
traditional utility concept by only requiring the utility function
be known up to the value of some uncertain utility parameter.
The principal idea of adaptive utility is then to treat the uncertain
utility parameter in the same manner that unknown random quan-
tities are typically treated in standard Bayesian statistical infer-
ence, i.e., they are subjected to a parametric learning model in
accordance with Bayes’ Theorem. Yet, and despite adaptive utility
theory explicitly permitting a DM to remain uncommitted to a pre-
sumed known and correct utility function, its previous use has re-
quired knowledge of a precise and meaningful prior distribution
concerning true preferences, something that is unlikely to be
considered either reasonable or justifiable when selecting from
outcomes that include (initially) new and foreign possibilities.

Rather than assuming a precise prior distribution over an uncer-
tain utility parameter, interest here is in the use of the Nonpara-
metric Predictive Inference (NPI) technique of Coolen (1996,
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2006), Augustin and Coolen (2004), which is a low structure statis-
tical technique arising naturally as a result of Hill’s A(n) assumption,
Hill (1968, 1988, 1993). Given a known ordered series of utility val-
ues that are considered subject to a post-data exchangeability
assumption, Nonparametric Predictive Utility Inference (NPUI)
proceeds by assigning equal mass to the probability that a new
utility value falls within any of the intervals formed by the known
ordered utility, leading to the quantification of such utility uncer-
tainty through interval probability.

An outline of the remainder is as follows; Section 2 reviews the
concept of uncertain utility and briefly describes how this can be
taken into account through adaptive utility theory, whilst Section
3 reviews the statistical technique of NPI. In Section 4 the two
strands of uncertain utility and nonparametric predictive inference
are combined to formally introduce the NPUI model, with an illus-
trative example being given in Section 5. Finally, Section 6 con-
cludes with a discussion of possible future directions.

2. Uncertain utility

The assumption that a DM can accurately identify the utility
value of any considered decision outcome is prevalent within the
theory and application of Bayesian decision making under uncer-
tainty. Often this will be through the use of an assumed model
for the utility of outcomes from a continuous domain, e.g., a loga-
rithmic model for monetary returns. Alternatively, specific utility
values may be considered appropriate following suitable intro-
spection concerning the decision problem. In either case, the pos-
sibility that a DM may not a priori know their preference for a
given outcome is often ignored.

In contrast, the theory of adaptive utility, as introduced by Cyert
and DeGroot (1975) and further developed by Houlding et al.
(2008), Houlding and Coolen (2007, 2011), generalises classical
Bayesian decision theory, suggesting a methodology for decision
selection even when the DM is unable to fully specify her prefer-
ences. In this setting the DM is permitted to be uncertain over
her true preferences, with the appropriate utility function over
decision outcomes only being known up to the value of some
uncertain parameter h. Such a parameter is referred to as the
DM’s state of mind, and it can be used to model uncertainty over
any aspect of the DM’s preferences, with interesting examples
including vectors of unknown trade-off weights or unknown level
of risk aversion. Notationally, such a dependence between the util-
ity function u(�) and the state of mind h was displayed via the inclu-
sion of a conditioning argument, e.g., u(�jh).

Instead of assuming that the utility function is fully known,
adaptive utility theory makes use of a probabilistic specification
concerning the uncertain state of mind h. Bayesian updating can
then occur once the DM receives additional information concern-
ing her true preferences, and previous examples considered for
such utility related information include noise corrupted observa-
tions of the true utility value, or the sign of the difference between
the prior expectation of the utility value for a given outcome and
the utility value that was actually received (i.e., an indication of
elation or disappointment). An adaptive utility function au(�) was
then defined as the expectation of the possible utility values with
respect to beliefs over the state of mind, i.e., au(�) = Eh[u(�jh)].

In essence, the use of adaptive utility theory is analogous to the
use of a hierarchical prior within robust Bayesian analysis, e.g., Ber-
ger (1993). A utility value, once scaled to fall within the interval [0,
1], corresponds to a probability, with the utility of decision out-
come o being that probability p which makes the DM indifferent
between receiving o for sure, or selecting the decision which re-
sults in most preferred outcome o⁄with probability p and least pre-
ferred outcome o⁄ otherwise, see DeGroot (1970). Adaptive utility

theory allows the DM to be uncertain of the value of p that results
in her indifference, instead considering a non-degenerate prior
subjective probability distribution for its value.

That such a probability distribution concerning utility values
may change following updating in light of additional information
motivates the name adaptive utility theory, for if the probability
distribution did alter, then so would the expected utility return,
i.e., the adaptive utility value. In other words, the adaptive utility
value of an unfamiliar decision outcome will ‘adapt’ in light of
additional information concerning preferences. This is in contrast
to classical utility theory in which the utility values of all decision
outcomes are considered known and fixed. Yet, explicitly permit-
ting utility uncertainty does not alter the suggested decision selec-
tion within a one-off decision problem, as the strategy arising from
the adaptive utility setting is the same as that which would arise
from traditional theory if the adaptive utility values were assumed
equal to the true utility values. However, in a sequential decision
problem the acceptance that certain decision outcomes do not
have known utility can alter the optimal selection strategy.

Notable alternative theories that similarly seek to incorporate
uncertain preference within a decision making paradigm include
the approaches of Farrow and Goldstein (2006) and Ben-Haim
et al. (2009). Rather than expressing uncertainty over an unknown
utility parameter through the use of a precise prior probability
distribution, Farrow and Goldstein allow the DM to remain non-
committed and to instead only provide an upper and lower bound
for the true utility value (through the declaration of lower and
upper bounds on trade-off parameters in a multi-attribute utility
hierarchy). In this respect the approach of Farrow and Goldstein
is similar to the NPUI approach presented here. However, differ-
ences result in that the use of the NPI statistical technique would
appear to be a simpler approach that is data driven. In particular,
the NPUI approach considered here does not require any explicit
declaration of subjective judgments and/or expressions concerning
the utility of a novel outcome other than that of a usually reason-
able and objective post-data exchangeability assumption.

In contrast, the approach of Ben-Haim et al. is to instead specify
an Info-Gap model of utility uncertainty, and is relevant for situa-
tions of severe uncertainty whereby, other than the specification of
a best point-estimate guess, nothing else can be elicited. In partic-
ular, there is no probabilistic specification of how accurate such a
best point-estimate guess may be. Instead a nested subset of pos-
sible horizons of uncertainty is specified and the decision selected
which is deemed most robust in that it guarantees a specified min-
imum critical return for the largest horizon of uncertainty. Unlike
the imprecise theory of Farrow and Goldstein, or the NPI method
used here, the Info-Gap approach of Ben-Haim et al. is non-proba-
bilistic, and can not quantify, or even give bounds on, the probabil-
ity of an outcome for any quantity that is subject to ‘Info-Gapping’.

There is also a long and developed literature on theories that
seek to take into account the descriptive behaviour of decision
makers following observations such as that identified in the Ells-
berg Paradox, see for example Ellsberg (1961), Schmeidler
(1989), Epstein (1999), Ghiradato et al. (2004), Klibanoff et al.
(2005), Halevy (2007) and the references therein. These typically
deal with what has been described as ‘ambiguity aversion’, which
has arisen following observational studies where individuals are
found to be less prepared to take part in bets when the stated po-
tential outcomes depended on the occurrence or non-occurrence of
a vague or unfamiliar event, compared to other bets whose stated
potential outcomes depended on the occurrence or non-occurrence
of events with which the individuals held greater experiences.

Here we do not consider situations where the likely outcome
of a decision is unknown (though that would be a straightforward
generalisation of the material presented), but instead with
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