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h i g h l i g h t s

� Robust models for predicting the liquid critical-flow rates for producing oil wells.
� Hybrid artificial neural networks coupled with training learning based optimization.
� Comparing the accuracy of published and new wellhead choke flow rate models.
� Gas/oil specific gravity and temperature impacts on the liquid critical-flow rates.
� Relevancy factors to determine relative contributions of flow rate variables.
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a b s t r a c t

Published relationships typically consider liquid critical-flow rate through wellhead chokes of producing
oil wells as functions of wellhead pressure, choke size and gas-liquid ratio. Such correlations can be
improved by taking into account three additional input variables: gas specific gravity, oil specific gravity
and temperature. Novel liquid critical-flow rate models, hybridizing an artificial neural network (ANN)
with a teaching-learning-based optimization (TLBO) algorithms, involving 3 and 6 input variables,
demonstrate improved accuracy compared to nonlinear regression models, traditional ANN models
and published correlations. The improved accuracy of the developed models is assessed statistically using
a data set of 113 wellhead flow tests from oil wells in South Iran (with a full data listing included). The
ANN-TLBO (6 parameters) developed model is the most accurate, yielding the best liquid critical-flow
rate predictions for that data set: coefficient of determination of 0.981; root mean square error of 714;
average relative error of 2.09%; and, average absolute relative error of 6.5%. The 6-parameters models
outperform the 3-parameters models without over complicating model functionality. This justifies the
consideration of all six input variables to deliver improved predictions of wellhead choke liquid
critical-flow rates. Calculation of relevancy factors for the 6-parameters ANN-TLBO model to the data
set for all six input variables reveals choke size and gas-liquid ratio have maximum and minimum influ-
ence in determining the liquid critical-flow rate, respectively.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In producing oil and gas wells, multiphase flow rate is a key
parameters in determining reservoir performance and sustainabil-
ity [31]. Accurate measurement and exact prediction of fluid flow
rates are important for production volume and resource recovery
forecasts and for establishing a stable and controllable flow regime
in producing wells. Flow rate usually is controlled using chokes
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which can be set either at the wellhead or downhole. The main
purpose of incorporating a choke is to facilitate control over fluid
flow rates, but controlling flow through chokes also prevents a
number of potential production and reservoir problems, e.g., sand
production, water and gas coning, formation damage, stabilizing
flow rate and applying back pressure [4,13,26,9,33,34].

Wellhead chokes consists of two main types: fixed and variable,
which have different capabilities based on their structural compo-
nents and designs [7,22]. The fixed-type choke has a fixed (non-
adjustable) diameter, while the variable-type chokes allow adjust-
ments to their diameter [5]. Two distinct flow regimes can prevail
when passing two phase flow through wellhead chokes: critical (or
sonic) flow or sub-critical (or sub-sonic) flow [23,55]. Critical flow
occurs when the fluid velocity reaches sonic velocity, which occurs
when the. ratio of downstream pressure to upstream pressure is
less than 0.588 [42,39]. During this type of flow, the mass flow rate
is only a function of the pressure upstream of the choke. Such flow
conditions frequently prevail in producing oil and gas wells [29],
and are also preferred for some reservoir flooding enhanced oil
recovery techniques [54]. It is also applied in other industries,
e.g., aerospace [60] and refrigeration engineering [1,19]. Sub-
critical flow conditions occur when the mass flow of the fluid is less
than the sonic velocity [9]. In sub-critical flow conditions, mass
flow rate depends on the pressure drop across any restrictions in
the flow stream (e.g., chokes), such that fluctuations in conditions
downstream of the restriction combine with upstream conditions
to influence flow rates. Critical-flow conditions are usually selected
for wellhead chokes in order to achieve stable flow rates and to
avoid frequent perturbations in equipment performance.

In the early 1980 s, numerous flow measurement tools were
designed and tested in oil and gas wells [32], but they are expen-
sive to implement on a field-wide basis [10]. Therefore, theoretical
and analytical approaches provide the predominant approaches
used to predict of the flow rate through chokes. Tangren et al.
[59] introduced and developed multiphase flow theory applied to
restrictions, which forms the foundation of subsequent modelling
and analytical studies. Gilbert [20] proposed a correlation and for-
mula (Eq. (1)) for calculating critical flow based on 268 data for
choke sizes ranging from 6/18 and 64/64 inches

QL ¼
PwhD

B
64

AðGLRÞC
ð1Þ

where
Pwh is the wellhead pressure (psia),
D64 is the choke size (1/64 inch),

GLR is the gas–liquid ratio (SCF/STB), and,
QL is the liquid critical-flow rate (STBD).
A, B and C are experimental coefficients calculated where suffi-
cient data is available for specific reservoir systems.

Baxendell [8] adjusted Gilbert’s equation for critical flow condi-
tions, and Ros [51] proposed an equation to derive oil and gas mass
flow rates under critical flow condition. Based on oil well data for
the Maracaibo field (Venezuela), Achong [2] established a different
set of values for coefficient’s A, B and C for Gilbert’s equation.
Poettmann and Beck [48] improved the performance of Ros’s equa-
tion using 108 data points for an oil field with choke restrictions
varying between 4/6400 and 28/6400. Omana et al. [42] developed a
new relationship based on a series of oil/gas two phase flow data
with upstream pressure varying between 400 and 1000 psig, liquid
flow rate of 800 STBD and choke restriction size varying between
4/6400 and 14/6400.

Fortunati [18] proposed different equations for critical and sub-
critical flow regimes, indicating the significance of the boundary
between those two flow regimes. Sachdeva et al. [53] developed
a theoretically relationship for mixed oil and gas two-phase flow
to estimate the magnitude of flow rates through restrictions under
critical and sub-critical conditions. Osman and Dokla [43] sug-
gested a relationship for determining flow rates through wellhead
restrictions using a least-squares method based on a data series for
a gas condensate reservoir. Perkins [46] derived a two-phase flow
equation involving mass, momentum and energy balance to
express isentropic flow through restrictions.

Guo et al. [25], based on a data set for oil and condensate wells
from southwest Louisiana, pointed out that Sachdeva’s model is
more precise for gas and condensate flow than for oil flow. Beiran-
vand et al. [9] presented two correlations, one for high-flow rate
wells and the other for high water-cut conditions, based on a data
set for an oil field offshore Iran. Nejatian et al. [40] applied the le
ast-square-support-vector-machine (LSSVM) method for predict-
ing the choke flow coefficient for nozzle and orifice type chokes
experiencing sub-sonic natural gas flow conditions. Seidi and
Sayahi [55] combined a genetic algorithm with non-linear regres-
sion analysis to predict the sub-critical, two-phase flow pressure
drop through large-diameter wellhead chokes.

Taking account of the extensive previous research, established
relationships and applications involved in modelling and predict-
ing wellhead choke flow, the key objectives of this study is to
demonstrate that a novel hybrid analytical approach involving arti-
ficial neural networks (ANN) combined with a training -learning-

Nomenclature

A, B, C, D, E and F empirical constants
ANN artificial neural network
BP back propagation
D64 choke size
GLR gas liquid ratio
G number of training samples
LSSVM least square support vector machine
Logsig log sigmoid
MAPE mean absolute percentage error
Mi mean at any iteration i
Mnew new mean
m number of output nodes
Purelin linear
Pwh wellhead pressure

R Pearson’s correlation coefficient
R2 coefficient of determination
ri a random number in the range of [0, 1]
SD standard deviation
T temperature
Tansig tangent sigmoid
Tsc standard temperature
Ti teacher at any iteration i
TF teaching factor
TLBO Teaching-learning-based optimization
QL liquid critical-flow rate
cg gas specific gravity
co oil specific gravity
ei random errors
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