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a b s t r a c t

This paper considers a resource allocation problem, which objective is to treat fairly all the system users.
Usually the requests cannot be entirely predicted, but the manager can forecast the request evolution,
this leading to a set of possible scenarios. Such a problem arises for instance in network bandwidth allo-
cation as well as in storage space management. It also appears in the management of computer systems,
such as computational grids or in cloud computing, when teams share a common pool of machines. Prob-
lems of fair resource sharing arise among users with equal access right but with different needs.

Here the problem is tackled by a multi-criteria model, where one criterion is associated to one scenario.
A solution is a policy, which provides an allocation for each scenario. An algorithm is proposed and ana-
lysed that lists all solutions which are Pareto optimal with regard to the different possible user request
scenarios. The algorithm is used offline, but can be adapted, with some additional hypothesis, to be used
online.

� 2011 Elsevier B.V. All rights reserved.

1. Problem introduction

The paper considers the allocation of a limited set of identical
resources to a set of users. The requests of each user arrive at suc-
cessive times. They are increasing and not known in advance, but
follow some anticipated pattern.

Such a problem occurs in many application domains of resource
allocation. Consider for instance many users sharing a common
fixed pool of resources controlled by a central manager, a neutral
and fair regulation authority. Examples of limited resources are
radio-frequency spectrum, see Ahmed et al. (2009), water supply,
Wang et al. (2004) and satellite orbit resources, see the role of the
ITU-R organization at international level Butler (1988), or IP ad-
dresses pool shared by many teams in some organization. The allo-
cation problem has also been studied for bandwidth allocation in
telecom networks: Goel et al. (2001b) and Kleinberg et al. (2001).
In another context such as computational grids, a possibly large
number of users compete for the resources of the grid: processors
or disks. The main objectives when managing the whole grid, or a
grid site (usually a large cluster of workstations) are to use the grid

or site to its maximum capacity (efficiency goal) and to satisfy all
groups and users. This also implies to treat them fairly (fairness
goal), see Kostreva et al. (2004) and Chevaleyre et al. (2007). If a site
is unable to maintain equity among groups or users its public image
will suffer and users or groups may choose to leave that site, as they
feel their rights are not respected, Rafaeli et al. (2002). A number of
recent papers consider fairness in grid scheduling, but from differ-
ent points of view. See for instance Rzadca et al. (2007) for a game
theoretic approach (and an analogy with the prisonner’s dilemma),
and Agnetis et al. (2010) for multi-agent scheduling. In Zhao and
Sakellariou (2006), multiple DAGs are scheduled in a grid with a
concern of fairness by equalizing the throughput of all DAGs. In
Pascual et al. (2009), the authors consider a multi-site scheduling
problem for which it is always possible to produce a collaborative
solution that respects participant’s selfish goals, while improving
the global performance of the system.

The second major issue is to model the uncertainties on the re-
quests. A first possibility is to make no assumption at all: requests
are dealt as they come, no hypothesis is done on the possible future
requests. This purely reactive or online approach, see Azar (1992),
is rather myopic and makes no use of the available data and facts.
Indeed, the requests of each user (or group of users) may be par-
tially anticipated. Classically, a probabilistic model can be used.
However, this approach has several drawbacks: the difficulty to
obtain accurate data, restrictive hypotheses as independence be-
tween users. . . An alternative is the scenario based model: each
user has a limited number of possible behaviors (i.e. a sequence
of increasing requests), and the behaviors of users might be depen-
dent. A probability might be associated to a given scenario, but this

0377-2217/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2011.10.029

q This work was supported by the French National Research Agency, reference
ANR-08-BLAN-0331-01 (ROBOCOOP Project).
⇑ Corresponding author. Tel.: +33 232 74 45 48.

E-mail addresses: medernac@clermont.in2p3.fr (E. Medernach), eric.sanlavil-
le@univ-lehavre.fr (E. Sanlaville).

1 LIMOS and LPC.
2 LITIS.

European Journal of Operational Research 218 (2012) 339–350

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2011.10.029
mailto:medernac@clermont.in2p3.fr
mailto:eric.sanlaville@univ-lehavre.fr
mailto:eric.sanlaville@univ-lehavre.fr
http://dx.doi.org/10.1016/j.ejor.2011.10.029
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


is not mandatory. Scenario models are widely used in robust
optimization especially since Kouvelis and Yu (1997), and in
economics, see for instance portfolio optimization. This model is
based on linear combination of mean and variance with a risk
avoidance coefficient between them. The problem can then be
formulated as a robust control problem with risk avoidance, as in
Fabozzi et al. (2007). Stochastic optimization methods are used
by Taflin (1999).

The resource allocation model chosen in this paper combines
fairness objectives with uncertainties on requests modeled by sce-
narios. From the data provided by the scenarios, the objective is to
build off-line (before the request arrivals) a policy, that is, a set of
allocation decisions, one per possible request. Such approaches for
optimization under uncertainties are called proactive, see Billaut
et al. (2008): they make use of an uncertainty model to compute
off-line a solution (or, as it is the case here, a policy). It is expected
however that no policy will outperform (according to the fairness
criterion) all the others for all scenarios. Hence a good compromise
has to be found. An important contribution of the paper is to exhi-
bit properties held by Pareto optimal policies in order to build
them.

We can indeed consider the problem as a multicriteria optimi-
zation problem, one criterion being the performance (here fairness)
of policies for one precise scenario. This issue of treating scenarios
as criteria is explored in depth by Hites et al. (2006). We emphasize
that looking for Pareto optimal policies overrides many of the dif-
ficulties highlighted in their paper. The system manager will then
have to choose, among Pareto optimal policies, the one that better
fits its particular needs. The rules that might be applied by the
manager are out of the scope of this paper, however some issues
are presented in Section 7.

For simplicity, the vocabulary of grid management will be used:
the available resources are denoted machines, a set of users send
requests to the grid management system. Nonetheless, our model
applies to any resource allocation problem with uncertain re-
quests, whose arrival depends on time, and for which fairness is
a major issue.

Section 2 presents the main definitions used throughout the pa-
per concerning the request model, the allocation policies, and the
fairness criterion. The different definitions of fairness are pre-
sented, and it ends with the formal statement of the problem as
a multicriteria optimization problem. Section 3 gives some preli-
minary results. Section 4 provides general results on the dominan-
cy of some types of policies. Section 5 focuses on the important
case of a set of scenarios modeled by a chain (a sequence of in-
cluded scenarios). It proposes an efficient algorithm to compute
all non-dominated policies. The algorithm is illustrated on an
example. It is shown in Section 6 to be applicable to the general
case and in an online framework. The perspectives of this work
are presented in Section 7.

2. Main definitions and problem statement

Definition 1 (RAP: resource allocation problem). An instance of
RAP is defined by: n users, m machines (available resources), Vk the
amount of machines requested by user k.

The request vector is V 2 Nn. A solution of RAP is an alloca-
tion vector A where Ak 6 Vk is the amount allocated to the user k.
The total amount #A ¼

P
kAk allocated to users is less than or

equal to m(#A 6m). The objective is to minimize a given criterion
Z(A).

As stated above, our goal in this section is to define an extension
of RAP taking into account the scenarios, and using fairness as
performance criterion. First, our uncertainty model is precised. It

respects the following hypotheses: machines are allocated to users
on a permanent basis. The number of machines requested by a gi-
ven user is not known in advance (i.e. during the offline phase); it
can evolve with time (online) but is supposed to be non-
decreasing.

2.1. Scenarios

Definition 2 (Decision point). A decision point is a given moment
during the online phase, when requests change and some alloca-
tion decision must be taken. Hence one decision point is associated
with exactly one request vector.

The system manager is supposed to have some knowledge of
the user needs. Furthermore, the evolution of user requests may
be correlated, as in the case of teams working together or because
of external factors. This is modeled by a set S of scenarios.

Definition 3 (Scenario). A scenario s is a sequence of decision
points with corresponding increasing request vectors starting from
0 . . . 0½ � (null request). The last request of the sequence is called

the final request of the scenario.

Definition 4 (Sub-scenario). s0 is a sub-scenario of s if and only if
the sequence of s0 is a prefix of the sequence of s.

Notation 1 (Partial ordering of decision points). If there exists a sce-
nario containing decision points p and p0 with p0 before p then
p0 � p.

Definition 5 (Set of scenarios). S is a set of scenarios associated to
the same assignment problem. A maximal scenario of S is a sce-
nario of S which is not a sub-scenario of any other element of S.

From the above definitions, it follows that the request must be
non-decreasing for each user, as supposed earlier. Note that our
model can be used both in the deterministic case and in the com-
pletely unknown case, when all possible scenarios (a large but fi-
nite number) have to be taken into account.

A set of scenarios S can be described as a rooted tree. The tree
associated to S, denoted TðSÞ, is built according to the following
rules: its vertices represent all possible sub-scenarios and their
associated final request vectors, and there is an arc from vertex
s1 to vertex s2 if and only if s1 is the largest subscenario of s2 (or
equivalently, there is a request vector V such that s2 = {s1,V}). The
initial null request may be represented as the tree root or omitted
whenever possible.

In the following, such a tree will be called a possibility tree (or
simply a tree), to avoid the confusion with scenario trees com-
monly used in other contexts. Scenario probabilities are not as-
sumed to be known beforehand in our model even if this could
be added to the possibility tree.

A scenario set of cardinality 9 is represented by the possibility
tree of Fig. 1. Scenario s1 ¼ 2 1 6½ � ! 7 1 6½ � is a subscenario
of the maximal scenario s2 ¼ 2 1 6½ � ! 7 1 6½ � !
15 6 10½ �. Remark that several vertices might be labeled by

the same request vector, if they belong to several scenarios which
are not one in the other included. In Fig. 1, request 15 6 10½ � is
accessible from 4 different scenarios, including s2.

Important remark: In the example above, no exact date is given
for the decision points. In fact such dates are usually not known
during offline phase, but as we shall see, they are not necessary
to compute a solution: the possibility tree labeled with the request
vectors suffices. Hence in what follows, decision points are identi-
fied with vertices of the tree (and with request vectors when there
is no ambiguity).
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