Fuel 206 (2017) 580-592

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Multi-objective optimization of thermally coupled reactor of CCR naphtha reforming in presence of SO₂ oxidation to boost the gasoline octane number and hydrogen

Reza Saeedi, Davood Iranshahi*

Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 424, Hafez Avenue, Tehran 15914, Iran

HIGHLIGHTS

• A novel thermally coupled reactor in CCR naphtha reforming process is modeled.

• Exothermic oxidation of SO₂ to SO₃ was used for coupling purpose.

• A new kinetic model involving 32 pseudo-component and 84 reactions is proposed.

• Multi-objective optimization is carried out to obtain the maximum amount of valuable product.

• Maximizing the octane number and minimizing the light ends are the best possible objective function.

ARTICLE INFO

Article history: Received 17 December 2016 Received in revised form 22 February 2017 Accepted 4 April 2017

Keywords: Naphtha reforming Continuous catalyst regeneration Thermal coupling Multi-objective optimization Gasoline Octane number

ABSTRACT

In this study, thermal coupling approach was used in catalytic naphtha reforming process with continuous catalyst regeneration with the intention of energy saving and mitigation of environmental issues. Due to the endothermic nature of catalytic naphtha reforming process, exothermic oxidation of SO₂ to SO₃ was used for coupling purpose. The kinetic model used in this study comprises 32 pseudo-components and 84 reactions which represent the main reactions of the process. Due to the several products in this process, multi-objective optimization and three cases are carried out to obtain the maximum amount of valuable products such as aromatics and hydrogen and minimum amount of light ends as well as maximizing the octane number of the exit stream. Maximizing the aromatics (octane number) and minimizing the light ends in reformate are the best possible objective functions in this research. The results of this study can be applied in different situations with regard to the required process goal e.g. maximizing the hydrogen production or research octane number (RON) of the products.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fossil fuels, still as the main source of fulfilling human need for energy, are accompanied with sulfur which is categorized as a pollutant agent. This element can be transformed into other sulfurous compounds such as SO_2 and H_2S during fuel combustion or refining processes, respectively. However, these compounds are also not environmentally friendly and can lead to severe human health issues through inhalation or exposure. Therefore, it is of great importance to contemplate beginning a sustainable plan for reducing the side effects of fuels that can result in an environmentallybenign process. Some efforts have been made with the purpose of removal or reducing the destructive effect of SO_2 [1–4]. Among these methods catalytic oxidation of SO₂ to SO₃ has been widely employed [5–7]. The main product, SO₃, can act as a precursor for production of useful substances for instance sulfuric acid, thionyl chloride, ammonium sulfate, etc. This oxidation process can be performed in absence or presence of catalysts such as V₂O₅ [5]. However, the latter is associated with higher rate of reaction. Some valuable studies on this process have been reported in literature. Dunn et al. examined the oxidation process of SO₂ to SO₃ over supported vanadium catalysts [5]. Jorgensen et al. investigated oxidation of SO₂ in the presence of homogeneous and heterogeneous catalysts, experimentally [6].

On the other side, naphtha reforming is one of the main processes performed in refineries with the aim of transforming lowoctane naphtha to high-octane reformate, as well as production of aromatics and hydrogen [8]. Three major configurations are typically utilized for carrying out this process: cyclic regenerative

Nomenclature

- catalyst activity in endothermic reaction side a_i
- acidic function activity in endothermic reaction side a_A
- acidic function activity for coke formation in endother a_{C_A} mic reaction side
- metallic function activity for coke formation in a_{C_M} endothermic reaction side
- metallic function activity in endothermic reaction side a_M
- cross section area of reactor in radial direction. m² Ar
- available side area for heat transfer. m² A_p
- concentration in endothermic reaction side, kmol m⁻³ (C^{Exo}
- concentration in exothermic reaction side, kmol m⁻³
- alkyl-cyclopentane concentration, kmol m⁻³ C_{ACP}
- coke weight fraction on acidic function of catalyst in C_{C_A} endothermic reaction side, kg kgcat $^{-1}$
- coke weight fraction on metallic function of catalyst in C_{C_M} endothermic reaction side, kg kgcat⁻⁻
- specific heat capacity at constant pressure in C_p endothermic reaction side, kJ kmol⁻¹ K⁻²
- C_{P}^{Exo} specific heat capacity at constant pressure in exothermic reaction side, kJ kmol $^{-1}$ K $^{-1}$
- C_v specific heat capacity at constant volume in endothermic reaction side, kJ kmol⁻¹ K⁻¹
- C^{Exo} specific heat capacity at constant volume in exothermic reaction side, kJ kmol⁻¹ K⁻¹
- total concentration in endothermic reaction side, C_T kmol m⁻³
- C_T^{Exo} total concentration in exothermic reaction side, kmol m⁻³
- particle diameter, m d_p
- dr control volume thickness in radial direction, m
- dz control volume length, m
- effective diffusivity, m² s⁻¹ D_e
- E_c coke formation activation energy in endothermic reaction side, J mol⁻¹
- Fi molar flow rate of component j in endothermic reaction side, kmol h^{-1}
- F^{Exo} molar flow rate of component j in exothermic reaction side, kmol h⁻¹
- total molar flow rate in endothermic reaction side, F_T kmol h⁻¹
- F_T^{Exo} total molar flow rate in exothermic reaction side, kmol h⁻
- molar flow rate of endothermic side, kmol h^{-1} Ff
- enthalpy of component j in endothermic reaction side, Ĥ_i J mol-
- H^{Exo} enthalpy of component j in exothermic reaction side, J mol⁻
- thermal conductivity, W m⁻¹ K⁻¹ k
- k_{C_A} constant of deactivation equation for acidic function in endothermic reaction side, kg kgcat⁻¹ kPaⁿ₁ m^{1.5} kmol^{-1.5}
- constant of deactivation equation for metallic function k_{C_M} in endothermic reaction side, kg kgcat⁻¹ kPaⁿ₁ m^{1.5} kmol^{-1.5}
- effective thermal conductivity, W m⁻¹ k⁻¹ k_{eff}
- reaction rate constant for endothermic reaction (in) k_{in}
- equilibrium constant for endothermic reaction (in) K_{in} L length of reactor, m
- number of reactions in endothermic reaction side т
- molecular weight of component j, kg kmol⁻ M:
- mean molecular weight in the flow, kg kmol⁻¹ M
- number of components in endothermic reaction side n
- constant of deactivation equation in endothermic n_1 reaction side

- constant of deactivation equation in endothermic n_2 reaction side
- acidic function activity power number in endothermic n_A reaction side
- acidic function activity power number in endothermic n_{CA} reaction side
- metallic function activity power number in endothermic n_M reaction side
- metallic function activity power number in endothermic n_{C_M} reaction side
- n′ number of components in exothermic reaction side
- molar flux of component j, kmol m $^{-2}$ h $^{-1}$ Ni
- Ńt molar flow rate in exothermic side, kmol h^{-1} Р
 - total pressure, kPa
- P_{A_n} partial pressure of n carbon aromatic, kPa
- P_{ACH_n} partial pressure of n carbon alkyl-cyclohexane, kPa
- partial pressure of n carbon alkyl-cyclopentane, kPa P_{ACP_n}
- P_{H_2} partial pressure of hydrogen in endothermic reaction side, kPa
- partial pressure of hydrogen in exothermic reaction P_{H2} side, Pa
- P_{IP_n} partial pressure of n carbon iso-paraffin, kPa
- P_{NB} partial pressure of nitrobenzene, Pa
- P_{NP_n} partial pressure of n carbon normal-paraffin, kPa
- radius. m r r_i

r'

- rate of ith reaction, kmol kgcat⁻¹ h⁻¹
- rate of inth reaction, kmol kgcat⁻¹ h⁻¹ r_{in}
 - rate of hydrogenation of nitrobenzene reaction, mol kgcat⁻¹ s⁻¹
- r_C^0 rate of coke formation on fresh catalyst in endothermic reaction side, kg kgcat⁻¹ h⁻¹
- rate of coke formation on acidic function of catalyst in r_{C_A} endothermic reaction side, kg kgcat⁻¹ h⁻¹
- rate of coke formation on metallic function of catalyst in r_{C_M} endothermic reaction side, kg kgcat⁻¹ h⁻¹
- gas constant, J mol⁻¹ K⁻¹ R
- R_i inner diameter, m
- outer diameter, m Ro
- specific surface, m² g⁻¹ Sa
- Т temperature of endothermic reaction side, K TExo
- temperature of exothermic reaction side, K U overall heat transfer coefficient, W m⁻² K⁻¹
- Ui internal energy of component j, $I \mod^{-1}$
- radial velocity in endothermic reaction side, m s⁻¹
- u_r^{J} u_r^{Exo} radial velocity in exothermic reaction side, m s⁻¹
- catalyst axial velocity in endothermic reaction side, u_z $m s^{-1}$

 u_{7}^{Exo} catalyst axial velocity in exothermic reaction side, m s⁻¹

mole fraction of component j y_j

Greek Letters

void fraction of catalyst bed in endothermic reaction
side
viscosity, kg m ^{-1} s ^{-1}
stoichiometric coefficient of component j in reaction i in
endothermic reaction side
stoichiometric coefficient of component j in exothermic
reaction side
reactor bulk density in endothermic reaction side,
$kg m^{-3}$
reactor bulk density in exothermic reaction side, kg m ⁻³
sphericity
endothermic reaction side angle
exothermic reaction side angle

Download English Version:

https://daneshyari.com/en/article/4768602

Download Persian Version:

https://daneshyari.com/article/4768602

Daneshyari.com