Fuel 204 (2017) 152-170

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Multi-fluid reactive modeling of sorption enhanced steam reforming of coke oven gas in fluidized bed

^a School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China
^b Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver V6T 123, Canada
^c State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China

HIGHLIGHTS

• Modeling of sorption enhanced steam reforming of coke oven gas in pilot-scale fluidized bed.

• A three-fluid Eulerian model coupling with structure-dependent chemical kinetics was presented.

• H₂ in COG augmented suppression of high operational pressure on carbon conversion.

• T > 580 °C, S/C = 3.3-4.3 and C/A = 0.2-1 was essential to achieve CH₄ conversion >80%.

ARTICLE INFO

Article history: Received 4 February 2017 Received in revised form 4 May 2017 Accepted 8 May 2017

Keywords: Coke oven gas Multi-fluids model H₂ production Eulerian approach Fluidized bed

ABSTRACT

A three-fluid Eulerian approach, which couples structure-dependent kinetic models of catalysis and carbonation reactions, is used to model sorption-enhanced steam reforming of coke oven gas (SER-COG) in a pilot-scale fluidized bed reactor. Three pellet models (PM-I, PM-II, PM-III) in terms of methodologies coupling hydrodynamics of multiple fluids with multi-scale reactions were comparatively studied. Pellet model PM-I, which dealt with catalyst and sorbent as separate dispersion phases and linked reaction kinetics closely with micro-structures of pellets in corresponding disperse phase, well reproduced the reformed gas compositions observed in experiments. With pellet model PM-I incorporated with the three-fluid Eulerian approach, numerical studies demonstrated that high H₂ or CO inlet fraction would suppress conversion of CH₄, and decreased CO selectivity because of the reduced reforming rates of steam and methane. High initial H₂ fraction in COG also amplified the suppression of high operational pressures on SER-COG. To achieve CH₄ conversion > 90%, products with H₂ > 95% and CO < 1%, a C/A (mass) of 0.2–1, steam/CH₄ around 3.3–4.3 were suggested for atmospheric SER-COG at 580 °C when a mixture of H₂/CH₄/ CO (0.3:0.6:0.06, molar) was fed as fuel.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Coke oven gas (COG) is a byproduct of coke-making process. It mainly consists of combustible gases such as CO, H_2 and CH_4 , and non-combustible gases including CO_2 and N_2 [1]. Typically, the mole fraction of H_2 amounts to 54–59%, and CH₄, CO may take up 24–28% and 6–8% respectively in COG. The annual production of COG in China exceeds 1800 Nm³. However, over half of COG is burned as waste gas or discharged directly [1]. Therefore, production of hydrogen from COG was attractive for energy saving and reduce environmental pollution [2].

* Corresponding author. E-mail address: yuminchen@cumt.edu.cn (Y. Chen). Pressure swing adsorption (PSA) separation was the major approach to recover H₂ from COG, but only hydrogen contained in COG may be separated. The remaining CH₄, CO and C2+ hydrocarbons were usually fueled to a combustor or also released into the atmosphere. Therefore, chemical methods to enhance conversion of tar, CH₄ and CO in COG, such as steam reforming, partial oxidation and dry reforming, have been applied to amplify the H₂ recovery ratio from COG [1]. Catalytic steam reforming of COG (SR-COG) is more favorable for hydrogen production, because hydrogen not only can be produced from COG but also steam. However, SR-COG was seriously limited by thermodynamic equilibrium due to the high H₂ contents of COG, thus required a very high temperature exceeding 1000 °C to achieve complete conversion of CH₄ and CO [3]. To improve hydrogen yield at medium temperature, sorption-enhanced steam reforming of COG (SER-COG)

Nomenclature

		Φ_{gs}
Latin symbol		β_{gs}
C_{Ds}	drag coefficient for single spheric particles	φ
D	diameter of cylinder reactor, m	ρ
D_e	efficient diffusion coefficient for gas, m^2/s	Θ
D_{pl}	CO_2 diffusivity in product layer, m ² /s	γ_s
D_{mol}	molecular diffusivity, m ² /s	$ au_i$
D_{kn}	Knudsen diffusivity, m ² /s	λ_s
d_p	particle diameter, m	μ_i
e_{ss}	restitution coefficient of solid phase	$\mu_{s,co}$
g_0	radial distribution function	$\mu_{s,kii}$
H_i	specific enthalpy of species i, J/kg	$\mu_{\mathrm{s,fr}}$
H_{sg}	interphase enthalpy between phase g and $s(s = A, C)$,	
-	J/kg	Subs
h_{sg}	heat transfer coefficient between phases, w/(m ² K)	g
h	height on the fluidized bed, m	S
Ι	identity tensor	Α
I_{2D}	second invariant of deviatoric stress tensor, s ⁻²	С
Ji	diffusion flux for species i, kg/(m ² s)	mf
k _i	thermal conductivity of phase i (i = g, A, C), J/(m K s)	b
<i>k_{eff}</i>	effective thermal conductivity, J/(m K s)	col
k_{Θ}	diffusion coefficient of granular energy	eff
m_{gs}	mass exchange between phase g and s(s = A,C),	kin
	$kg/(m^3 s)$	fr
Nu	Nusselt number	in
Р	pressure, Pa	0
P_s	solid pressure, Pa	
Pr	gas prandtl number	Abbr
Q_{gs}	heat exchange between phases, w/s	SMR
Re	Reynolds number	SE-S
T_i	temperature for phase i, K	SER-
U	superficial velocity, m/s	S/C
U_{mf}	minimum fluidization velocity, m/s	Ċ/A
		ΙÍG
Greek s	symbol	
Namar	volume fraction for the particles at maximum packing	

cript and superscript gas phase solid phase adsorbent catalyst minimum fluidization bubble collisional term effective term kinetic term friction term interphase initial condition *reviations* steam methane reforming *MR* sorption enhanced steam reforming of methane COG sorption enhanced steam reforming of coke oven gas steam-to-methane ratio catalyst-to-adsorbent ratio incompressible ideal gas

interphase kinetic energy exchange coefficient interphase momentum exchange coefficent

viscosity for phase i (i = g, A, C), kg/(m s)

specularity coefficient density, kg/m³

bulk viscosity, kg/(m s)

granular temperature, m²/s² collision dissipation energy stress tensor for phase i (i = g, A, C)

collisional viscosity, kg/(m s) kinetic viscosity, kg/(m s) frictional viscosity, kg/(m s)

was put forward. With CO₂ being captured on-line by an active sorbent during SER-COG, the chemical equilibrium of steam reforming of COG was shifted to the direction of hydrogen production [4]. The adsorbed CO₂ was then separated by desorption and gathered later for storage or other utilizations. CaO-based materials are ideal candidates as the sorbent due to their abundant sources [5], and fast kinetics and relative high CO₂ uptake at reforming temperature (500–850 °C). The main overall reactions in SER-COG process with CaO-based material as CO₂ acceptor were written as:

$$CH_4 + H_2O \iff CO + 3H_2 \qquad (H^0_{298} = 206.2 \text{ kJ/mol}) \tag{1}$$

$$CO + H_2O \iff CO_2 + H_2 \qquad (H^0_{298} = -41 \text{ kJ/mol}) \tag{2}$$

$$CH_4 + 2H_2O \iff CO_2 + 4H_2 \quad (H^0_{298} = 165 \text{ kJ/mol}) \tag{3}$$

$$CaO + CO_2 \iff CaCO_3 \qquad (H^0_{298} = -178 \text{ kJ/mol})$$

$$(4)$$

Incorporation of refractory materials such as MgO, ZrO₂, ZnO into CaO helped to inhibit sintering of CaO grains and stabilize the intra-particle pore structures, so improve its cyclic stability and mechanical properties [6,7]. Integration of CaO content and nickel-based catalyst chemically, named hybrid or bifunctional pellet, also can promote the cyclic stability of CaO [8–11]. In this

study, calcined dolomite, mainly consisting of MgO and CaO, was used as CO₂ acceptor during SER-COG in a pilot-scale fluidized bed reformer [7].

Steam reforming of COG amplified hydrogen volumetric content from 58.2% to 77.7%, but a reforming temperature >850 °C was required when only a NiO/MgO solid solution catalyst presented [12]. Wang et al. [13] conducted thermal economic, process efficiency analysis on SER-COG based on a thermodynamic equilibrium model. Compared with hydrogen recovery by PSA, energy conversion efficiency of SER-COG reached 77.6% at 2.5 MPa, S/ C = 4.13, CaO/C = 1.75. Xie et al. [14] reported that SER-COG could convert the vast majority of carbon in COG into high purity CO₂ as by-product of hydrogen recovery. Wu et al. [15] experimentally studied SER-COG in a fixed bed reactor using a Ni-nano-CaO/Al₂O₃ sorption enhanced catalyst. A product with H₂ mole fraction >95% was achieved at 600 °C and a steam/CH₄ of 5.8 under atmospheric pressure [16]. Currently, rare work focused on SER-COG in a fluidized bed reactor, although fluidization operation was especially attractive for sorption-enhanced process because it facilitated continuous sorbent feed and regeneration. SER-COG in a fluidized reformer was an integration of multi-scale chemical reactions (catalysis, heterogeneous reactions), competition of adsorption and convection, and interfacial mass, heat and momentum transfer. Non-linear interaction of gas-solid phase, solid-solid phase also exerts vigorous effects on chemical reactions and physical transfer phenomena. Numerical studies of SER-COG based on multiphase Download English Version:

https://daneshyari.com/en/article/4768660

Download Persian Version:

https://daneshyari.com/article/4768660

Daneshyari.com