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a b s t r a c t

In many industrial processes hundreds of noisy and correlated process variables are collected for moni-
toring and control purposes. The goal is often to correctly classify production batches into classes, such as
good or failed, based on the process variables. We propose a method for selecting the best process vari-
ables for classification of process batches using multiple criteria including classification performance
measures (i.e., sensitivity and specificity) and the measurement cost. The method applies Partial Least
Squares (PLS) regression on the training set to derive an importance index for each variable. Then an iter-
ative classification/elimination procedure using k-Nearest Neighbor is carried out. Finally, Pareto analysis
is used to select the best set of variables and avoid excessive retention of variables. The method proposed
here consistently selects process variables important for classification, regardless of the batches included
in the training data. Further, we demonstrate the advantages of the proposed method using six industrial
datasets.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The enormous volume of data collected from industrial pro-
cesses has challenged researchers to develop efficient methods to
identify the most important process variables. In much of the exist-
ing work, the goal has been to find the most important variables for
predicting outcomes, i.e., variables related to the product as in
Gauchi and Chagnon (2001), Meiri and Zahavi (2006), Ozturk
et al. (2006) and Olafsson et al. (2008). In contrast, the goal of this
study is to select process variables that are most important for
classification of production batches into two classes (e.g., good
batches and failed batches).

The contribution here is a new method for identifying the most
important process variables for classification. The proposed meth-
od classifies batches into two categories and selects the most
important process variables based on multiple criteria which could
include, for example, accuracy, specificity, sensitivity, and cost. In
addition, the method is also applicable where there are many more
variables than batches, a common situation in batch processing.

This work overcomes the limitations in Anzanello et al. (2009)
where a method for identifying the most important process
variables for classification is proposed based on one performance

criterion only, namely, classification accuracy. Most important,
simulation results presented here indicate that the previous meth-
od is inconsistent in that the number of process variables chosen to
achieve maximum accuracy depends on the observations that are
included in the training set. The inconsistency is an artifact of
selecting the variables based on accuracy alone. For example, the
previous method selects a set with 50 variables and accuracy
95% over a set with five variables and accuracy 94%. The method
proposed here offers multicriteria variable selection, for example
considering both maximizing accuracy and minimizing the num-
ber of variables, and consistently selects process variables impor-
tant for classification. Further, we demonstrate the advantages of
the method proposed here using six industrial datasets.

The most obvious single criterion for selecting variables in a
classification task is classification accuracy – the fraction of
batches that are correctly classified either as conforming or non-
conforming. However there are situations where other criteria
may be more critical. In pharmaceutical processing, for example,
incorrectly classifying a non-conforming batch as a good batch
may lead to serious consequences. In this case specificity, the frac-
tion of non-conforming batches that are correctly classified may be
one of the key criteria for selecting variables. In other words, a false
negative is much more costly than a false positive. On the other
hand, in situations where the major costs are associated with
scrapping good batches sensitivity, the fraction of good batches
that are correctly classified, may be one of the key criteria.

In many applications, one of the criteria for selecting process
variables can be cost. The goal is to select a set of variables that
minimizes the cost of measuring and collecting data.
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Over the last decade, approaches for multicriteria variable
selection using accuracy, sensitivity, and specificity have been pro-
posed for several real life classification problems, especially in text
recognition, business decisions and security systems; see Rose-
Pehrsson et al. (2000), Doan and Horiguchi (2004), Piramuthu
(2004), Pendaraki et al. (2005), Huang et al. (2006), Pasiouras
et al. (2007) and Aragonés-Beltrán et al. (2008). For a comprehen-
sive review on multicriteria classification and decision making, see
Zopounidis and Doumpos (2002), Steuer and Na (2003) and Sueyo-
shi (2006). Recently, other data mining-based approaches for vari-
able selection have been expanded to the biomedical area (Li and
Li, 2008; Su and Yang, 2008), as well as in financial decisions
(Gaganis et al., 2007; Kirkos et al., 2008).

The method proposed here works as follows. First, Partial Least
Squares (PLS) regression is performed on the training set to com-
pute a variable importance index for each of the real valued pro-
cess variables. Then, using all process variables, the training set
is classified using the k-Nearest Neighbor (KNN) based on the
Euclidean distance of the real valued process variables; classifica-
tion performance measures (accuracy, sensitivity, etc.) are then
computed. Subsequently, the variable with the lowest importance
index is eliminated. The training set is classified using the remain-
ing process variables, and the classification performance measures
are computed again. This variable elimination process is repeated
until there is only one variable left, generating a number of candi-
date sets of selected process variables. To reduce the number of
candidates we apply Pareto optimality analysis and identify the
Pareto frontier sets. Among these, the variable set that is closest
to the ideal solution (e.g., maximum sensitivity, maximum speci-
ficity, minimum cost) is then selected. The selected process vari-
ables are validated on the testing set.

The rest of this paper is organized as follows. Section 2 presents
a review of PLS mathematical fundamentals, KNN classification
technique and Pareto optimality analysis. Section 3 describes the
method for selecting the best subset of variables for classification.
Section 4 presents the design of the simulation experiment used to
compare the performance of the method proposed to the method
in Anzanello et al. (2009). Section 5 shows that the method pre-
sented here is more consistent and selects fewer variables while
leading to comparable accuracy. Section 6 applies the proposed
method to six actual manufacturing data sets. Final conclusions
are presented in Section 7.

2. Background

2.1. PLS regression

In this study, we focus on batch processing, common such as in
chemical engineering applications. Batches are often characterized
by many process variables and just one product variable. PLS
regression is employed in our method because it has been widely
applied to select variables for prediction of product variables; see
Lindgren et al. (1994), Forina et al. (1999) and Sarabia et al.
(2001). More recently it has been used in classification of produc-
tion batches in Anzanello et al. (2009). PLS is known for performing
well with correlated variables and high dimensional data fre-
quently found in industrial applications; see Wold et al. (2001a),
Kettaneh et al. (2005), Nelson et al. (2006) and Hoskuldsson
(2001).

PLS constructs a small number of independent, linear combina-
tions of the process variables. These new variables, called PLS com-
ponents, account for much of the variance present in the original
process variables and in the product variables. Typically only three
or four PLS components can be used to represent dozens or even
hundreds of process variables.

The key parameters that result from PLS regression are weights
and loadings. These parameters can be calculated by means of the
NIPALS algorithm; see Goutis (1997), Abdi (2003) and Geladi and
Kowalski (1986). Further mathematical details of PLS can be ob-
tained in Westerhuis et al. (1998), Wold et al. (2001a,b). The PLS
regression can be performed using the PLS toolbox in statistical
packages as Matlab� and R�.

The PLS regression can be formally defined as follows. Consider
a matrix X consisting of N observations for each of J process vari-
ables and a matrix Y consisting of N observations for each of M
product variables. (Note that in this study M = 1.) The process
observation i is represented by the vector xi (xi1,xi2, . . . ,xiJ), while
the product observation i is denoted by yi (yi1, yi2, . . . ,yiM), for
i = 1, . . . ,N.

PLS constructs A independent PLS components that are linear
combinations tia ¼ w1axi1 þw2axi2 þ � � � þwJaxiJ ¼ w0axi of the pro-
cess variables, with A 6 J. The number of process components, A,
is typically small, and can be defined by the cross-validation meth-
od in Hoskuldsson (1988). Vector wa = (w1a,w2a, . . . ,wJa)0 represents
the weights, which provide information about the way the vari-
ables combined themselves to generate X and Y as in Wold et al.
(2001a).

Similarly, components are constructed for the product variables
in Y; i.e., uia ¼ c1ayi1 þ c2ayi2 þ � � � þ cMayiM ¼ c0ayi, where ca = (c1a,
c2a, . . . , cMa)0 is the product variable weights. The weight vectors
wa and ca aim at maximizing the covariance of the PLS components
ta and ua. The weights are selected to yield components indepen-
dent of one another; i.e., ta’s are orthogonal as in Xu and Albin
(2002). Further, the loading vector, pa = (p1a,p2a, . . . ,pJa)0, is ob-
tained by the regression of the columns of X on ta, and provide
relevant information about the process variables when associated
to the process component ta.

2.2. k-Nearest Neighbor (KNN)

The k-Nearest Neighbor (KNN) technique is our choice of classi-
fication method as it is widely used, conceptually simple, and read-
ily available in software packages. Anzanello et al. (2009)
systematically compares KNN to Probabilistic Neural Networks,
Support Vector Machines, and modifications of the KNN in the con-
text of selecting the best variables for classification and KNN was
identified there as the best choice. Some applications of KNN in-
clude gene classification in Golub et al. (1999), text recognition
patterns in Weiss et al. (1999), and detection of abnormal brain
activity in Chaovalitwongse et al. (2007).

The KNN algorithm can be formally defined as follows. Consider
N observations in a J-dimensional training dataset, where J corre-
sponds to the process variables. The objective is to classify a new
observation in 0 or 1, denoting non-conforming or conforming,
based only on process variables. The KNN algorithm measures
the Euclidean distances between the new observation and the k
nearest neighbors, i.e., existing observations. The class of each of
the k neighbors is known, 0 or 1. A new observation is labeled as
0 if the majority of its k nearest neighbors belongs to 0. The num-
ber of neighbors, k, is selected by maximizing a classification per-
formance measure in the training set where the class of each
observation is known. Further details about KNN classification
technique can be found in Ridgeway (2003).

2.3. Pareto optimal analysis

Pareto optimal analysis has been widely used for diverse appli-
cations including process design in Azapgic (1999), scheduling of
manufacturing operations in Taboada and Coit (2008), and reliabil-
ity optimization in power transmission in Taboada and Coit (2007).
Given a set of choices (for example, possible subsets of variables)
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