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a b s t r a c t

In this paper, we propose a novel method to mine association rules for classification problems namely
AFSRC (AFS association rules for classification) realized in the framework of the axiomatic fuzzy set
(AFS) theory. This model provides a simple and efficient rule generation mechanism. It can also retain
meaningful rules for imbalanced classes by fuzzifying the concept of the class support of a rule. In addi-
tion, AFSRC can handle different data types occurring simultaneously. Furthermore, the new model can
produce membership functions automatically by processing available data. An extensive suite of exper-
iments are reported which offer a comprehensive comparison of the performance of the method with the
performance of some other methods available in the literature. The experimental result shows that AFSRC
outperforms most of other methods when being quantified in terms of accuracy and interpretability.
AFSRC forms a classifier with high accuracy and more interpretable rule base of smaller size while retain-
ing a sound balance between these two characteristics.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Classification is one of the most commonly applied supervised
data mining paradigms. There exist various methods of classifica-
tion depending on the information available and the nature of
the classification task. Both classification accuracy and interpret-
ability are essential in any classification problem. High accuracy
usually leads to complex and hard to understand models, while
the existing high interpretable models cannot satisfy the require-
ment of high accuracy. For example, the ‘‘rule-based’’ classifiers,
say C4.5 (Quinlan, 1993), Ripper (Cohen, 1995) and OneR (Holte,
1993) may suffer from limited accuracy. While the other classifiers,
such as KNN (Aha and Kibler, 1991) and SVM (Keerthi et al., 2001)
are difficult to comprehend.

An important classification technique that has attracted an
increasing attention in recent years comes in the form of classifica-
tion rules based on association rule mining techniques (see e.g.
Agrawal et al., 1993; Chen et al., 2006; Li et al., 2001). Association
rule discovery originates from market basket analysis and aims at
finding interesting relationships hidden in large data sets. The gen-
eral form of association rule is expressed in terms of the implica-
tion A) B. Here A is the antecedent and B is the consequent

which consists items. The new technique, called ‘‘associative clas-
sification’’ (Pach et al., 2008), aims to combine the advantages of
both traditional classification and association discovery. Associa-
tive classifiers have certain advantages which make them suitable
for application to classification problems. The major advantages of
associative classifiers include the interpretability, fast training and
the power of handling training sets of high dimensionality. Unfor-
tunately, studies also showed that classical associative classifiers
have some weaknesses such as a huge number of discovered rules.

Fuzzy predicates have been incorporated into the realm of ma-
chine learning and data mining to augment the types of data rela-
tionships that can be represented in the form of rules, to facilitate
the interpretation of rules, and to avoid Boolean boundaries when
partitioning attribute domains (see e.g. Amo et al., 2004; Ravi et al.,
2000; Serrurier et al., 2007). The incorporation of fuzzy sets into
classification tasks enables us to combine uncertainty handling
and approximate reasoning capabilities of the former with the
comprehensibility and ease of application of the latter. This combi-
nation augments the representation capabilities of rules with the
knowledge component inherent to fuzzy logic subsequently lead-
ing to their robustness, noise immunity, and substantial applicabil-
ity level in particular when dealing with situations we encounter a
factor of uncertainty.

Different methods were proposed for mining fuzzy association
rules from quantitative data (see e.g. Chen and Weng, 2009; Hong
and Lee, 2008) where the membership functions of the linguistic
terms were specified in advance. The AFS framework proposed
by Liu (1998) supports the studies on how to convert the informa-
tion hidden in databases into the membership functions and their
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fuzzy logic operations. In this paper, we use fuzzy sets (member-
ship functions) and underlying logic operations generated by AFS
to eliminate potential subjective bias present in the conventional
fuzzy rules resulting from the use of different membership func-
tions of the fuzzy terms. In order to realize mining meaningful
rules from data with imbalanced classes we define a new concept
of a fuzzy class support. In order to avoid the difficulty of deter-
mining the minimal confidence level we propose the optimal fuzzy
confidence truncation leading to the reduction of the available rule
base. The tuning of the optimal fuzzy confidence truncation and
the accuracy-driven pruning methods help generate a compact
and efficient fuzzy rule-based classifier.

To offer a thorough comparative test, we experimented with the
algorithm using twelve well-known real data sets coming from the
UCI Repository (Merz and Murphy, 1996), and compared the pro-
posed algorithm with twelve classical classifiers implemented in
Weka Witten and Frank (2005) with respect to their accuracy
and interpretability (rule size). Among them, eight are rule-based
classifiers and the others are ‘‘black box’’ classifiers. We also com-
pared obtained results with those reported for the previously pub-
lished association rule-based classifiers. Finally, the consistency of
the AFS membership functions is illustrated. The experiments
show that the proposed model performs well on both interpret-
ability and accuracy compared with other classifier systems. AFSRC
offers an understandable and accurate classifier and it can retain
sound balance between these efficiency criteria.

The paper is structured as follows. Section 2 recalls the basic no-
tions and properties of the AFS theory that are essential in the
framework of our investigations. In Section 3, we proposed the
algorithm of AFSRC. Section 4 is concerned with experiments and
some comparative analysis. The concluding remarks are presented
in Section 5.

2. Selected preliminaries of the AFS theory

In this section, we recall some notations and present the most
pertinent results of AFS theory.

2.1. AFS algebra

In Liu (1998), the AFS algebra was defined along with their
applications to study the development of membership functions
for fuzzy concepts. The following example serves as a brief illustra-
tion of the AFS algebra.

Example 1. Let X = {x1,x2, . . . ,x10} be a set of 10 customers with
some features which are described by real numbers, categorical/
Boolean values, ranks and the order relations. It is shown in
Table 1. The ordinal number ith in the‘‘white’’ column which
corresponds to some x 2 X implies that the hair color of x has
ordered ith following our perception of the color. For example, the
numbers in the column ‘‘white’’ imply the order (>) : x4 > x5 = x8 >

x3 > x1 = x9 > x7 > x2 > x6 > x10. Here, xi > xj states that the hair of xi is
closer to the white color than the color of hair the individual xj. The
relationship xi = xj means that the hair of xi looks as white as that of
xj. The values in the ‘‘work’’column has the relationship according
to the work skill level: high > med > prim > none.

A concept on X may associate to one or more features. For
instance, the fuzzy concept ‘‘rich’’ associates a single feature
‘‘estate’’ and the fuzzy concept ‘‘old white hair males’’ associates
three features ‘‘age’’, ‘‘white’’ and ‘‘male’’. The concepts associated
with a single features are viewed as fuzzy (or numeric) linguistic
terms of the corresponding feature. For instance, the fuzzy
concepts (fuzzy linguistic terms) ‘‘old’’ and ‘‘about 40 years old’’
associate to the feature ‘‘age’’.

Let M = {m1,m2, . . . ,m8} be the set of fuzzy (or numeric) linguis-
tic terms on X and each m 2M associates to a single feature. Where
m1: ‘‘old person’’, m2: ‘‘rich person’’, m3: ‘‘high work skill person’’, m4:
‘‘young person’’, m5: ‘‘the person about 45 years old’’, m6: ‘‘male’’, m7:
‘‘female’’(i.e., not male), m8: ‘‘person with white hair’’. The elements
of M are viewed as ‘‘ elementary terms’’ (or ‘‘simple concept’’) of
the corresponding features. For each set of fuzzy terms
A # M;

Q
m2Am represents the conjunction of the fuzzy terms in A.

For instance, A ¼ fm1;m7g# M;
Q

m2Am ¼ m1m7 represents a new
fuzzy concept ‘‘old woman’’ which is associating to the features
‘‘age’’ and ‘‘male’’.

P
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;Ai # M; i 2 I, which is a formal
sum of the fuzzy terms

Q
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m, is the disjunction of the conjunc-
tions of the fuzzy terms in Ai represented by

Q
m2Ai

m’s (i.e., the dis-
junctive normal form of a formula representing a concept). For
example, we may have c = m1m6 + m1m3 + m2 which translates as
‘‘old males’’ or ‘‘high work skill old persons’’ or ‘‘rich persons’’ (the
‘‘+’’ here denotes a disjunction of terms). While M may be a set
of fuzzy or two-valued terms, every

P
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� �

;Ai # M; i 2 I,
has a well-defined meaning such as the one we have discussed
above. By a straightforward comparison of the expressions

n ¼ m3m8 þm1m3 þm1m6m8 þm1m3m8 and f

¼ m3m8 þm1m3 þm1m6m8:

we conclude that the above concepts are equivalent. Considering n,
for any x, the degree of x belonging to the fuzzy concept represented
by m1m3m8 is always less than or equal to the degree of x belonging
to the fuzzy concept represented by m1m3. Therefore, the item
m1m3m8 is redundant when forming the fuzzy concept n. Let us take
into consideration two expressions of the form a : m1m3 þm2m5m6

and m : m5m6 þm6m8. The semantic content of the fuzzy concepts
‘‘a or m’’ and ‘‘a and m’’ can be expressed as follows ‘‘a or m’’ :
m1m3 + m2m5m6 + m5m6 + m6m8 equivalent to m1m3 + m5m6 + m6m8.
‘‘a and m’’ : m1m3m5m6 + m2m5m6 + m1m3m6m8 + m2m5m6m8 equiv-
alent to m1m3m5m6 + m2m5m6 + m1m3m6m8.

The semantics of the logic expressions such as ‘‘equivalent to’’,
‘‘or’’ and ‘‘and’’ as expressed by

P
i2Ið
Q

m2Ai
mÞ;Ai # M; i 2 I, can be

formulated in items of the AFS algebra in the following manner.
Let M be a non-empty set. The set EM⁄ is defined by EM� ¼P
i2I

Q
m2Ai

m
� �

jAi # M; i 2 I; I is any non� empty indexing set
n o

.

Definition 1 Liu (1998)). Let M be a non-empty set. A binary

relation R on EM⁄ is defined as follows. For any
P
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such that Bj � Ak.

It is clear that R is an equivalence relation. The quotient set EM⁄/

R is denoted by EM. The notation
P
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means that
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and
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are equivalent under

equivalence relation R. Thus the semantics they represent are

Table 1
A set of customers.

Customer Age Estate Male Work white credit

x1 25 0 1 prim 4th 0
x2 19 0 0 prim 6th 0
x3 50 34 0 high 3rd 1
x4 80 80 1 none 1st 1
x5 34 2 1 med 2nd 0
x6 37 28 0 high 7th 1
x7 45 90 1 med 5th 1
x8 70 45 1 none 2nd 1
x9 60 98 0 med 4th 1
x10 3 0 0 none 8th 0
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