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a b s t r a c t

This paper studies the vector optimization problem of finding weakly efficient points for maps from Rn to
Rm , with respect to the partial order induced by a closed, convex, and pointed cone C � Rm , with non-
empty interior. We develop for this problem an extension of the proximal point method for scalar-valued
convex optimization problem with a modified convergence sensing condition that allows us to construct an
interior proximal method for solving VOP on nonpolyhedral set.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let C be a closed, convex, and pointed cone in Rm, with
int(C) – ;, where int(C) denotes the interior of set C. Then, C
induces a partial order � in Rm, given by y � y0 if, and only if,
y0 � y 2 C, with its associated relation � given by y � y0 if, and only
if, y0 � y 2 int(C). Our goal is to analyze methods to find a weakly
efficient solution of the following problem

ðVOPÞ C �minfFðxÞ : x 2 Xg;

where F : Rn ! Rm [ fþ1Cg is a proper positively lower semicon-
tinuous C-convex map and X is a nonempty convex closed subset
of dom(F), with nonempty interior.

Recently, (Huang and Yang, 2004; Sylva and Crema, 2004;
Bonnel et al., 2005; Graña Drummond and Svaiter, 2005; Antczak,
2006; Jeyakumar et al., 2006; Ceng and Yao, 2007; Graña Drum-
mond et al., 2008; Fliege et al., 2009; Gregório and Oliveira,
2010; Gutiérrez et al., 2010), among others, have worked in multi-
objective and/or vector optimization, and gotten extensions of sev-
eral theoretical results and numerical methods, well-known in the
literature for scalar optimization. In those extensions, they define
the iterates in the vector-valued case by considering the order �
in Y, where Y is a real Banach space, or particularly Euclidean
spaces, mimicking, whenever possible, the role of the usual order

in R to the corresponding algorithm for scalar-valued optimization.
In the meantime, we admit the possibility that F takes value þ1C .

The decade has seen considerable progress in the theory of
proximal point methods for scalar-valued problems, several of
them are based on generalized distances, see, e.g., (Auslender and
Teboulle, 2006; Kaplan and Tichatschke, 2004, 2007a,b). Now, we
give a brief description of this kind of methods. Consider the fol-
lowing convex minimization problem:

infff ðxÞ : x 2 Xg; ð1:1Þ

where f : Rn ! R [ fþ1g is a proper, lower semicontinuous and
convex function. The proximal point method generates a sequence
fxkg � Rn corresponding to the recursion

gkþ1 þ bkr1dðxkþ1; xkÞ ¼ 0; ð1:2Þ

where gkþ1 2 @ek
f ðxkþ1Þ, {bk} is a bounded exogenous sequence of

positive real numbers (called regularization parameters), r1d(�,y)
denotes the gradient map of function d(�,y) with respect to the first
variable, d is some proximity measure, and xk the current iterate.

With the choice d(x,y) = 2�1kx � yk2 and ek = 0, for all k 2 N, we
may recover the classic proximal algorithm, whose origins can be
traced back to the 1960s, see, e.g., (Moreau, 1965; Martinet,
1970, 1972; Rockafellar, 1976). In this case, the sequence {xk} pro-
duced by the above algorithm does not necessarily belong to
int(X). Thus the proximal term d(x,y) will play the role of a dis-
tance-like function, satisfying certain properties, see Section 2,
which will force the iterates of the produced sequence to stay in
int(X) and thus automatically eliminate the constraints.

It has been proved in Auslender and Teboulle (2006) that the se-
quence {xk} generated by the proximal point method (1.2) belongs
to int(X) and converges to some solution of problem (1.1), under
some conditions on d.
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In the so-called inexact versions of the method, xk+1 need not to
be an exact solution of the subproblem (1.2), but only an approxi-
mate solution of it. Clearly, the inexact version is essential if one
wants to get the convergence results for actual implementations
of this kind of method. Inexact versions were proposed as early
as 1976, see, e.g., (Rockafellar, 1976), in which the kth subproblem
was allowed to be solved within a prescribed tolerance ek, and it
was demanded that

P1
k¼0ek <1. Similar error criteria, requiring

summability of the tolerances, appeared in several papers later
on.

Kaplan and Tichatschke (2007a,b, 2008) use Bregman functions
with a modified ‘‘convergence sensing condition’’ that enables
them to construct a generalized proximal method for solving
(1.1) on sets that are not necessarily polyhedral. For this, they ad-
mit a successive approximation of the operator @f and an inexact
calculation of the proximal iterate. This method generates se-
quences fxkg � Rn and fhkg � Rn corresponding to the recursion

hkþ1 2 Qkðxkþ1Þ þ bkr1Dĥðx
kþ1; xkÞ ð1:3Þ

where {bk} is a bounded exogenous sequence of positive real num-
bers, Dĥ is the Bregman distance induced by ĥ ¼ hþ g and
@f � Qk � @ek

f .
It has been proved in Kaplan and Tichatschke (2007a,b) that if h,

g, hk and ek satisfy certain properties, the sequence {xk} generated,
by the proximal point method (1.3), belongs to int(X) and con-
verges to some solution of problem (1.1).

The above discussion refers, of course, to the proximal method
for scalar-valued convex optimization. This paper consists of the
extension of both the exact proximal method (1.2), ek = 0, and inex-
act counterpart (1.3) to the vector-valued optimization problem
introduced at the beginning of this section. Basically, in the exact
case the kth subproblem will consist of finding weakly efficient
solutions of

FðxÞ þ bkdðx; xkÞek ð1:4Þ

restricted to the set Xk �X defined as Xk = {x 2X : F(x) � F(xk)},
where d is a proximal distance on int(X) and ek is an exogenously
selected vector belonging to int(C), with kekk = 1.

For our inexact version, we consider the positive polar cone
C� � Rm, given by C� ¼ fz 2 Rm : hy; ziP 0 for all y 2 Cg, and the
indicator function IXk

, of set Xk, defined as above. We take an exog-
enous sequence {zk} � C⁄, with kzkk = 1 for all k 2 N, and define, at
iteration k, the function fk : Rn ! R [ fþ1g as

fkðxÞ ¼ hFðxÞ; zki þ IXk
: ð1:5Þ

Then we take as xk+1 any vector x 2X such that there exists
hkþ1 2 Rn, ek 2 Rþ satisfying

hkþ1 2 QkðxÞ þ bkhek; zkir1
~dðx; xkÞ; ð1:6Þ

where @fk � Qk � @ek
fk and ~d is a convenient proximal distance.

We will establish that any sequence generated by either our ex-
act or inexact version converges to a weakly efficient solution of F
on X under the following hypothesis:

(A1) F is C-convex on X, i.e., F(kxþ ð1� k)x0) � kF ðxÞ þ ð1� k)F(x0)
for all x, x0 2X and all k 2 [0,1].

(A2) F is positively lower semicontinuous, i.e., hF(�),zi is lower
semicontinuous for every z 2 C⁄.

(A3) The set (F(x0) � C) \ F(X) is C-complete; i.e., for every
sequence {ak} �X, with a0 = x0, such that F(an+1) � F(ak) for
all k 2 N, there exists a 2X such that F(a) � F(ak) for all
k 2 N.

In the absence of assumption A3, we establish convergence re-
sults, namely, that the generated sequence is a minimizing one for

our problem, meaning that {F(xk)} approaches the set of infimal
values of F, that will be showed in Propositions 4.2 and 4.3 of
Section 4.

The paper is organized as follows: Section 2 recalls and intro-
duces some required preliminary material. Section 3 states for-
mally the problem. The exact version of the method is analyzed
in Section 4. Finally, Section 5 develops the inexact version.

2. Preliminaries

We adopt the following convex analysis notation (Rockafellar,
1970). For a proper convex and lsc function f : Rn ! R [ fþ1g,
its effective domain is set by domf = {x : f(x) < þ1g, and for all
�P 0 its � � subdifferential at x is defined by @�f ðxÞ ¼
fg 2 Rn : 8 z 2 Rn; f ðzÞ þ �P f ðxÞ þ hg; z� xig, which coincides
with the usual subdifferential @f = @0f whenever � = 0. We set
dom@f ¼ fx 2 Rn : @f ðxÞ– ;g. For any convex set S � Rn, IS denotes
the indicator function of S, ri(S) its relative interior, int(S) its inte-
rior, S its closedness and NSðxÞ ¼ @ISðxÞ ¼ fm 2 Rn : hm; z� xi
6 0 8 z 2 Sg the normal cone to S at x 2 S.

Now, we recall some useful properties of convex analysis and
nonnegative sequences.

Lemma 2.1 Rockafellar (1970, Corollary 6.5.2). Let S1 be a convex
set. Let S2 be a convex set contained in S1 but not entirely contained in
the relative boundary of S1. Then ri(S2) � ri(S1).

Lemma 2.2 Rockafellar (1970, Theorem 27.4). Let f be a proper
convex function, and let S be a nonempty convex set. In order that
x⁄ be a point where the infimum of f, relative to S, is attained, it is suf-
ficient that there exists a vector y⁄ 2 @ f(x⁄) such that �y⁄ is normal to
S at x⁄. This condition is necessary, as well as sufficient, if ri(dom f)
intersects ri(S), or if S is polyhedral and ri(dom f) merely intersects S.

Lemma 2.3 Polyak (1987, Lemma 2.2.2). Let {nk}, {tk} and {fk} be
nonnegative sequences of real numbers satisfying nkþ16 ð1þtkÞnk + fk

and such that
P1

k¼1fk <1;
P1

k¼1tk <1. Then, the sequence {nk}
converges.

2.1. Proximal distances

In this part we remember definitions of proximal distance d and
induced proximal distance H, presented in Auslender and Teboulle
(2006). Furthermore, we will introduce a subclass of the induced
proximal distance H, which is slightly modified of that was given
by them.

Definition 2.1. A function d : Rn � Rn ! Rþ [ fþ1g is called a
proximal distance with respect to an open nonempty convex set
S � Rn if for each y 2 S it satisfies the following properties:

(P1) d(�,y) is proper, lsc, convex, and continuously differentiable
on S;

(P2) dom dð�; yÞ � S and domr1d(�,y) = S, where r1d(�,y) denotes
the gradient map of function d(�,y) with respect to the first
variable;

(P3) d(�,y) is level bounded on Rn, i.e., limkxk?1dðx; yÞ ¼ þ1;
(P4) d(y,y) = 0.

Just as in Auslender and Teboulle (2006), we also denote by DðSÞ
the family of functions d satisfying Definition 2.1.

The next definition associates for each given d 2 DðSÞ another
function satisfying some convenient properties.
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