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Mineral concentrators can be designed to support several modes of operation, which can be optimized for differ-
ent geometallurgical units. Nonetheless, alternative modes often require additional equipment and processing
capacity, hence an associated capital expenditure. Moreover, the concentrator designs are often based on prelim-
inary geological data, and are therefore subject to uncertainty. The current paper describes how stochastic mine
planning algorithms may be extended to quantify the net present value (NPV) of alternative operational modes
in mineral processing plants, under geological uncertainty. In particular, the Variable Neighbourhood Descent
method of Lamghari et al. (2014) was originally developed for open-pit mine planning, and has now been
adapted to evaluate concentrator operational modes. Sample computations are presented.
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1. Introduction

Amineral concentrator is amajor capital investment that is designed
largely at the beginning of the mine life, along with a strategic mine
plan. Indeed, concentrator designs may be based on the same prelimi-
nary geological data as themine plan. The utilization of the concentrator
and related infrastructure is thus subject to geological uncertainty,
which should be reflected in engineering methodologies.

The class of techniques used to incorporate ore variability into met-
allurgical process design is referred to as geometallurgy and consists of
three broad steps: (1) appropriate sampling of the orebody, followed by
(2) metallurgical testing of the resultant samples to map the empirical
metallurgical data (e.g. Bond Work Index, flotation recovery) through-
out the block model using geostatistics, and (3) predicting process out-
comes from the block model using a process model (Wills and Finch,
2016). The term “geometallurgical unit” is used to describe a class of
ores that are predicted to have similar metallurgical performance due
to their comparable composition and morphological features (Lotter et
al., 2011).

Geometallurgical approaches have been used to predict grinding cir-
cuit throughput (Alruiz et al., 2009), industrial flotation kinetics (Suazo
et al., 2010), and heavy mineral sand separations (Philander and
Rozendaal, 2014), and has influenced total process design (Lotter et
al., 2011). One stream of research in this field seeks to take this process

one step further by developing statistically reliable particle breakage
models (Van der Wielen and Rollinson, 2016) so that fewer samples
need to undergo metallurgical testing (Lund et al., 2015). In this ap-
proach, the input to the geometallurgical model is the behaviour of par-
ticles (based on their composition, size, shape, etc.) rather than sample-
associated quantities such as Bond Work Index or flotation recovery
(Lund et al., 2015). Readers interested in the history and development
of geometallurgical techniques are directed to Lotter et al. (2011).

Geometallurgy leads to predictive models, which are an essential
link betweenmine planning activities and final concentrator outcomes.
Accurate prediction of downstream process outcomes allows “planning
engineers [to] modify the mining sequence of metallurgical units… in
order to ensure a certain level of throughput” or othermetallurgical out-
come (Alruiz et al., 2009). However, the successful application of these
models depends on the accuracy of the geological inputs. In particular,
the design (or expansion) of a concentrator has long-term conse-
quences, and would demand that the models be extrapolated over sev-
eral years, possibly decades; such a long outlook typically implies
geological uncertainty, as the sampling points may be sparse for the
deepest zones. As such, the economic justification for additionalmineral
processing equipment requires a systematic incorporation of long-term
geological uncertainty.

This uncertainty is already addressed by stochastic strategic mine
planning algorithms (Ramazan and Dimitrakopoulos, 2005; Ramazan
and Dimitrakopoulos, 2013), as they simultaneously consider several
geological scenarios (Fig. 1). Each of the scenarios is obtained through
conditional simulation (Ravenscroft, 1992), which is a form of Monte
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Carlo simulation (Raychaudhuri, 2008). In this sense, “conditional” im-
plies that the scenarios must match the available geostatistical data, in-
cluding local spatial averages and variances (first and second order
conditions, respectively). Conditional simulation uses appropriate ran-
dom data to fill in the areas between the sampling points. In principle,
each of the scenarios is equally likely. However, they are notably differ-
ent from one another, as they are each generated from a different set of
random numbers. A greater variation between the scenarios corre-
sponds to a greater degree of geological uncertainty. In practice, ten to
twenty scenarios have been found to provide a sufficient representation
of this uncertainty (Albor andDimitrakopoulos, 2010), as each addition-
al scenario has a diminishing impact on the resulting mine plan.

The current work presents an extension of strategic mine planning
algorithms that addresses the performance of different geometallurgical
units. In particular, the new approach considers alternate modes of op-
eration for mineral concentrators, which are designed to address the
distinct geometallurgical units thatmay bepresent in the ore. Therefore,
each geological scenario assigns randomly generated grade values, as
well as other randomly generatedmineralogical attributes, which affect
the processing of these blocks under the different operational modes.
Ultimately, the approach can be used to create confidence intervals to
project economic returns, with and without the implementation of ad-
ditional operational modes, thus providing a statistical basis to compare
plant designs, and justify plant expansions.

2. Concentrator modes within a two-stage optimization framework

Given a set of geological scenarios (Fig. 1), strategic mine planning
considers two or more decision-making stages (Ramazan and
Dimitrakopoulos, 2013; Navarra and Waters, 2016):

• Possibly one ormore stages to determine thedesign and/or position of
main shafts, processing plants, and other auxiliary equipment

• The block combinatorial stage to determine which combination of
blocks to mine in each period

• The downstream stage to determine the expected economic return
that is obtained from the downstream processing of the mined mate-
rial (concentration, transportation, etc.)

The decisions that are made in early stages serve to parameterize and
constrain the later stages.

Following previous work, the block combinatorial and downstream
stages have been integrated into a two-stage stochastic optimization
framework (Ramazan and Dimitrakopoulos, 2005; Navarra and
Waters, 2016), which considers a set of feasible mine plans X. A mine
plan x is feasible (i.e. x ∈ X) if it respects the mine tonnage capacity for
each period, as well as structural mechanic constraints, e.g. a maximum
pit slope in the case of open-pit mining. The economic value that can be
extracted from each block depends on the processing technique that is
applied, which in turn depends on the grade and rock type of the
block, and is thus subject to geological uncertainty. Indeed, a strategic

(long-term) evaluation of a plan x must allow processing decisions to
be determined on a tactical (short-term) basis, as more geological
data becomes available. Aswill be described below, these processingde-
cisions constitute an optimization within an optimization, i.e. a two-
stage optimization.

The objective is to construct a feasible mine plan x ∈ X that maxi-
mizes the expected net present value (NPV) of the operation,

E NPV xð Þ½ � ¼ −∑
nT

t¼1
ct xð Þ þ 1

nS
∑
nT

t¼1
∑
nS

s¼1
vts xð Þ ð1Þ

in which ct(x) is the expected discountedmining cost incurred in period
t,vts(x) is the recovered value in period t and under scenario s. The num-
ber of time periods and scenarios under consideration are denoted nT
and nS, respectively. The time periods typically correspond to 0.5 or
more years of operation.
In general, vts(x) is itself an optimization

vts xð Þ ¼ max
y∈Yts xð Þ

vts x; yð Þ ð2Þ

in which Yts(x) is the set of feasible downstream parameterizations for
period t, under geological scenario s, given a mine plan x. Increasingly
realistic models of downstream operations correspond to increasingly
complex definitions of Yts(x); a relatively simple definition is sufficient
to represent alternate concentrator modes, as will be described below.
The objective of the framework can be written as max

x∈X
E½NPVðxÞ�, or

more explicitly,

max
x∈X

−∑
nT

t¼1
ct xð Þ þ 1

nS
∑
nT

t¼1
∑
nS

s¼1
max

y∈Yts xð Þ
vtsðx; yÞ

� �

which is indeed a two-stage stochastic optimization. This type of frame-
work has been applied in open-pit mining for well over a decade
(Ramazan and Dimitrakopoulos, 2005; Dimitrakopoulos, 2011), and
has recently been adapted to underground mining (Carpentier et al.,
2016).

Particular implementations of the two-stage optimization frame-
work consist of the following:

• A procedure to obtain and evaluate an initial feasible solution x ∈ X
• A combinatorial algorithm that modifies the incumbent solution x in
search of altered solutions x′ that may be superior to x

• A procedure to evaluate ct(x′) for all periods t
• A downstream optimization that evaluates vts(x′), for all periods t and
scenarios s

When the combinatorial algorithmencounters a feasible candidate x′∈X
such that E½NPVðx0Þ�NE½NPVðxÞ�, x′ becomes the new incumbent solu-
tion, x ← x′. The combinatorial algorithm continues searching until no
more improvements can be reached.

Fig. 1. Strategic stochastic mining planning considers several equally likely geological scenarios to construct a single long-term mine plan, which is likely to perform well for the entire
distribution of possible scenarios.
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