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Application of Random Forest (RF) via variable importance measurements (VIMs) and prediction is a new data
mining model, not yet wide spread in the applied science and engineering fields. In this study, the VIMs (proxi-
mate and ultimate analysis, petrography) processed by RF models were used for the prediction of Hardgrove
Grindability Index (HGI) based on a wide range of Kentucky coal samples. VIMs, coupled with Pearson correla-
tion, through various analyses indicated that total sulfur, liptinite, and vitrinite maximum reflectance (Rmax)
are the most importance variables for the prediction of HGI. These effective predictors have been used as inputs
for the prediction of HGI by a RF model. Results indicated that the RF model can model HGI quite satisfactorily
when the R2 = 0.90 and 99% of predicted HGIs had less than 4 HGI unit error in the testing stage. According to
the result, by providing nonlinear VIMs as well as an accurate prediction model, RF can be further employed as
a reliable and accurate technique for the evaluation of complex relationships in coal processing investigations.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The U.S. Energy Information Administration (EIA) estimated that
total coal production will be increased by 27 million short-tons in
2017 (EIA, 2016). Increasing demand for high purity coal, as well as
growing awareness about environmental pollution is associated with
coal consumption. Therefore, developing technologies that make coal
cleaner significantly have been considered to ensure it plays a part in
our future clean energy. Ultimately, to liberate, and finally remove
coal impurities (such as mineral matter), coal particles have to commi-
nuted to fine particles (in size range of several microns) (Sengupta,
2002).

Comminution (crushing and grinding or pulverizing), as an essential
step in coal treatment, is often the greatest energy consumer in coal
washing plants (Sengupta, 2002). Therefore understanding the behav-
ior of coal through comminution process would be important, and hav-
ing more information on the subject could be effective for control and
optimization of other treatment processes (combustion, gasification,
carbonization, etc.) (Bhattacharya et al., 1998; Sengupta, 2002;
Vuthaluru et al., 2003; Lee et al., 2003).

Grindability measurement of coal can demonstrate the above men-
tioned aspects where coal grindability as an essential physical property
of coal reflects its relative hardness, tenacity, and fracture (effective

parameters on comminution performance). Coal grindability is influ-
enced by coal rank, petrography and mineral matter (Hower et al.,
1987; Hower and Wild, 1988; Conroy, 1994; Barton et al., 1994; Bailey
and Hodson, 1994; Hower, 1998; Rubiera et al., 1999; Bhattacharya
et al., 1998; Sengupta, 2002; Vuthaluru et al., 2003; Trimble and
Hower, 2003). Grindability of coal is usually measured by Hardgrove
Grindability Index (HGI) (based on the standard test method ASTM D
409-71) (ASTM, 1971; Lee et al., 2003). The result of the HGI test is
the most effective parameter in designing a coal mill for power plants.
HGI also as a predictive index is used to estimate the performance ca-
pacity of industrial pulverizers in power station boilers (lower HGI
will require a greater energy input and time to the desired size for
pulverized-fuel combustion) (Mackowsky and Abramski, 1943; Peters
et al., 1962; Hower and Lineberry, 1988; Hower, 1998; Vuthaluru
et al., 2003; Peisheng et al., 2005).

Although the HGI test is not costly (albeit time consuming), due to
inherent limitation through the test, HGI determination can be rather
difficult. Some of the difficulties which can be considered for a HGI de-
termination are: limitation of the developed methodology; various
types of HGI machine and difference in grinding bowl and its material
composition; different stages to get the required size; differences in
sample preparation; and reliability, repeatability and reproducibility of
the test. These difficulties could be due to heterogeneous properties of
coal samples such as coal rank,maceral andmicrolithotype distribution,
andmineral matter (Xuexin, 2001; Sengupta, 2002). To overcome these
problems many researchers have investigated the prediction of HGI
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based on various coal analyses; common coal analyses (proximate and
ultimate analysis), petrography, and vitrinite maximum reflectance
(Rmax) by using regression and soft computing methods [artificial neu-
ral networks (ANNs), genetic algorithm (GA), Nero-fuzzy (such as
ANFIS)] (Hower and Wild, 1988; Peisheng et al., 2005; Jorjani et al.,
2008a, 2008b; Chehreh Chelgani et al., 2008; Chehreh Chelgani et al.,
2011a, 2011b; Chehreh Chelgani and Makaremi, 2013).

These developed models (regression and soft computing) depen-
dent upon the quality of the input data into the generation of the
models, and are used to yield promising descriptive results. The essen-
tial point is that, variation in a parameter such as HGI cannot be under-
stood without a thorough knowledge of the fundamental coal
properties. In addition, in many cases, a variable would be a relatively
strong contributor to HGI, but would have stronger correlation to the
other variables that were influencing HGI. Including these variables in-
flates the correlation (R2) of the model, but does not necessarily mean
that the model describes HGI more accurately. Therefore, before devel-
oping complex models, necessary caution has to be used in selecting of
variables to study the great inter-dependence between coal properties,
and then HGI (Trimble and Hower, 2003; Hower, 2006). Generally re-
gression and soft computingmethods are just capable of capturing com-
plex relationships among large numbers of variables to predict a target,
but they do not necessarily give any particular insight into the interrela-
tionships among inputs and target variables. This major problem led to
the development of so-called variable importance measures (VIMs)
which can be used to identify the individual effects of explanatory var-
iables (Auret and Aldrich, 2012).

A recently developed method, Random Forests (RFs), can overcome
this drawback by providing attractive addition to nonlinear approxima-
tion of statistical relationships among inputs and outputs (Breiman,
2001; Strobl et al., 2008; Archer and Kimes, 2008; Hallett et al., 2014).
RF as an ensemble of multiple decision trees is a type of a high-
dimensional, non-parametric predictivemodel consisting of a collection
of classification or regression trees (Breiman, 2001). RFs also have been
successfully applied to various prediction models within the last de-
cades and through this short period of time they have become a major
data analysis tool which performs well in comparison with many stan-
dard methods (Díaz-Uriarte and Alvarez de Andrés, 2006; Heidema
et al., 2006). RF models have several advantages over other statistical
modeling techniques: they are able to deal with missing values and
high-dimensional data, identify complex interactions between variables
and the most important variables measurements (VIMs), predict with
high accuracy (low-bias models and low-variation in results), and
they are robust against over-fitting (Hopwood et al., 1994;
Díaz-Uriarte and Alvarez de Andrés, 2006; Biau et al., 2008; Archer
and Kimes, 2008). Although there is a widespread usage of RF models
in various fields (RFmethod should be considered bywell-informed ex-
perts in the field) (Auret and Aldrich, 2012; Biau et al., 2008; Archer and
Kimes, 2008; Hallett et al., 2014; Chehreh Chelgani et al., 2016a), to our
knowledge there are rarely used to explore interrelationship among
coal properties or for predictions (Matin and Chehreh Chelgani, 2016;
Chehreh Chelgani et al., 2016b).

The aim of the present investigation is to assess the properties of
over 900 coal samples from Kentucky, USA, in order to estimate the
HGI with the most important parameters based on ultimate and proxi-
mate analysis, oxides, and petrographic analysis of samples by using RF.
To our best knowledge, no tree or RF based methods have been pro-
posed for the estimation of coal grindability.

2. Materials and methods

2.1. Experimental data

A soft computingmodel for the HGI prediction requires a robust da-
tabase to cover awide variety of coal types. Such amodelwill be capable
for predicting HGI with a high degree of accuracy. Data used to test the

proposed approaches are from studies conducted at the University of
Kentucky Center for Applied Energy Research. Samples were prepared
from Western and Eastern Kentucky Southwest, Hazard and Big Sandy
coals. A total of more than 900 sets of datawere used. The results of var-
ious analyses (input variables for HGI prediction) and their representa-
tive HGIs are shown in the supplementary database. Analyses were
performed according to the standard ASTM test methods (ASTMD
409-71: Hardgrove, ASTM D3172: Proximate, and ASTM D3176: Ulti-
mate analyses). For petrology, all samples were previously prepared as
particulate pellets.

2.2. Random Forest

2.2.1. Variable importance measurements (VIMs)
RF methods aside from accurate prediction have another extremely

useful output which is variable importance measures (VIMs)
(Breiman, 2001; Svetnik et al., 2003; Liaw and Wiener, 2002;
Bylander, 2002). VIMs for RFs have been receiving increased attention
as a means of variable selection in many non-parametric regression
tasks (Wang et al., 2016). VIMs provide insight into the interactions be-
tween predictors and by a group of tree computed relationships be-
tween a target and predictors to indicate which variables have the
significant effect on the target (Hallett et al., 2014). The most popular
and advanced VIM available in RFs is the permutation accuracy impor-
tance (PAI) measure (Strobl et al., 2007; Hapfelmeier et al., 2014). For
variable selection purposes, themain advantage of the PAI in RF as com-
pared to other tree-based methods is that it covers the impact of each
predictor variable individually as well as in multivariate interactions
with other predictor variables (Strobl et al., 2007). PAI is broad applica-
ble and unbiased through the consideration of multivariate interactions
among variables (Breiman, 2001; Strobl et al., 2007).

In PAI for VIMs, “out of bag” (OOB: computations based on observa-
tions that were not part of the sample used for constructing the respec-
tive tree) dataset accuracy is always applied to evaluate the
performance. OOB achieves higher accuracy with low bias and variance
than other tree structured algorithms (Kulkarni and Sinha, 2013). The
OOB data can be permuted, without required to train new forests
(Breiman and Cutler, 2003; Archer and Kimes, 2008). In summary, the
computation of the PAI consists of the following steps:

1) Calculating the mean square error (MSE) of a decision tree,
2) Permuting the values of explanatory variable in the OOB

observations,
3) Recalculating the OOB MSE of that decision tree,
4) Calculating the difference between the MSE values which were cal-

culated in step 1 and 3, and
5) Repeating the above steps for each decision tree and use the average

difference over all trees as the overall importance score (Strobl et al.,
2008; Hapfelmeier et al., 2014; Wang et al., 2016).

The reference implementation of PAI is available in the “R” software
package for statistical computing which has been used in this study
(https://www.r-project.org/). VIM is determined based on the
“IncNodePurity”. The IncNodePurity parameter of the RF is average
overall nodes in all trees in the forest.

2.2.2. Prediction by RF
As mentioned, RFs are broadly used in many investigations for pre-

diction of complex models (complicated relationships). Through pre-
diction by RF, the model combines a number of trees by taking the
same number of bootstrap samples (random samples of the original
data with replacement and with the same length) from the database,
and building a tree based on each bootstrap sample (Hallett et al.,
2014). The procedure of taking a bootstrap sample from the original
training data to establish the training dataset for each tree is called bag-
ging of decision trees (Archer and Kimes, 2008; Wang et al., 2016). For
prediction, an estimated label is provided by the average over all trees
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