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a b s t r a c t

The unequal-areas facility layout problem is concerned with finding the optimal arrangement of a given
number of non-overlapping indivisible departments with unequal area requirements within a facility. We
present a convex-optimisation-based framework for efficiently finding competitive solutions for this
problem. The framework is based on the combination of two mathematical programming models. The
first model is a convex relaxation of the layout problem that establishes the relative position of the
departments within the facility, and the second model uses semidefinite optimisation to determine the
final layout. Aspect ratio constraints, frequently used in facility layout methods to restrict the occurrence
of overly long and narrow departments in the computed layouts, are taken into account by both models.
We present computational results showing that the proposed framework consistently produces compet-
itive, and often improved, layouts for well-known large instances when compared with other approaches
in the literature.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The unequal-areas facility layout problem (FLP) is concerned
with finding the optimal arrangement of a given number of non-
overlapping indivisible departments with unequal area require-
ments within a facility. The objective of the FLP is to minimize
the total expected cost of flows inside the facility, where the cost
incurred for each pair of departments is taken as the rectilinear dis-
tance between the centroids of the departments times the pro-
jected flow between them. The projected flow may reflect
transportation costs, the construction of a material-handling sys-
tem, the costs of laying communication wiring, or even adjacency
preferences among departments. The problem contains two sets
of constraints: department area requirements and department

location requirements (such as departments not overlapping, lying
within the facility, and in some cases being fixed to a location, or
being forbidden from specific regions). We assume that the facility
and the departments are all rectangular. Since the height and
width of the departments can vary, finding their optimal rectangu-
lar shapes is also part of the problem. The ratios height/width and
width/height, called aspect ratios, also pose a challenge since
departments with low aspect ratios are most practical in real-
world applications, but this makes the problem harder. A solution
to the FLP is a block layout that specifies the relative location and
the dimensions of each department. Once a block layout has been
achieved, a detailed layout can be designed which specifies depart-
ment locations, aisle structures and input/output point locations
[8,24,27,43].

A thorough survey of the facility-layout problem is given in
[18], where the papers on facility layout are divided into three
broad categories. The first is concerned with algorithms for tack-
ling the FLP as defined above. The second category is concerned
with extensions that take into account additional issues that arise
in real-world applications, such as designing dynamic layouts by
taking time-dependency issues into account, designing layouts
under uncertainty conditions, and computing layouts that
optimize two or more objectives simultaneously. The third
category is concerned with specially structured instances of the
problem, such as the layout of machines along a production line.
In this paper, we shall focus exclusively on the block layout FLP.

The FLP as described above is a hard optimisation problem.
In fact, even the restricted version where the shapes of the
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departments are all equal and fixed, and the optimisation is taken
over a fixed finite set of possible department locations, is NP-hard.
This restricted version is known as the quadratic assignment prob-
lem (QAP), see for example [37]. The largest QAP instances of the
well-known Nugent set, those with 27, 28, and 30 departments,
were solved to proven optimality using vast amounts of computa-
tional power and important improvements in mathematical pro-
gramming algorithms [4].

Two types of approaches for finding provably optimal solutions
for the FLP have been proposed in the literature. The first type are
graph-theoretic approaches that assume that the desirability of
locating each pair of facilities adjacent to each other is known. Ini-
tially, the area and shape of the departments are ignored, and each
department is simply represented by a node in a graph. Adjacency
relationships between departments can now be represented by arcs
connecting the corresponding nodes in the graph. The objective is
then to construct a graph that maximizes the weight on the adja-
cencies between nodes. We refer the reader to [17] for more details.
The second type are mathematical programming formulations with
objective functions based on an appropriately weighted sum of cen-
troid-to-centroid distances between departments. Exact mixed
integer programming formulations were proposed in [33,35], and
nonlinear programming formulations are presented in some detail
in Section 2 below. More recently, FLPs with up to eleven depart-
ments were solved to global optimality [39,12,11,32]. Thus, most
of the approaches in the literature that tackle realistically sized
problems are based on heuristics with no guarantee of optimality.
These include genetic algorithms, tabu search, simulated annealing,
fuzzy logic, and many others, see, e.g. [25,18,30,40].

The contribution of this paper is a two-stage convex-optimisa-
tion-based framework for efficiently finding competitive solutions
for this problem. (Two-stage approaches for this problem using
techniques different from ours are presented in [34,13].) The
framework is based on the combination of two mathematical pro-
gramming models. The first model is a convex relaxation of the
layout problem that establishes the relative position of the depart-
ments within the facility, while the second model uses semidefi-
nite optimisation to determine the final layout. Both models
account for aspect ratio constraints, which are frequently used in
facility layout methods to restrict the occurrence of overly long
and narrow departments in the computed layouts. We present
computational results showing that the proposed methodology
consistently produces competitive, and often improved, layouts
for well-known large instances when compared with other
approaches in the literature.

This paper is structured as follows. In Section 2, the most recent
nonlinear programming methods for the FLP are summarized. In
Section 3, the proposed framework is motivated and derived. Com-
putational results demonstrating the strength and potential of this
framework are presented in Section 4. Finally, possible directions
for future research are discussed in Section 5.

2. Previous nonlinear-programming-based methods

Throughout this paper we label the departments i = 1, . . . ,N,
where N is the total number of departments. The position of each
department i is expressed by the coordinates of its centre and is de-
noted by (xi,yi). It is assumed that the nonnegative costs cij per unit
distance between departments i and j are given and are symmetric,
i.e. cij = cji. We will approximate each department by a circle of ra-
dius ri. The idea of using circular departments, or of approximating
departments using circles, has been considered in several contexts
(see for example [10,15,48] and the references therein).

We begin by describing the target distance methodology
employed in [1,2]. Let each module i be represented by a circle of

radius ri, where ri is proportional to
ffiffiffiffi
ai
p

, the square root of the area
of module i. Following [1], we define the target distance for each
pair of circles i, j as

tij ¼ aðri þ rjÞ2;

where a > 0 is a parameter. To prevent circles from overlapping, the
target distance is enforced via the objective function by introducing
a penalty term which acts as a repeller:

f
Dij

tij

� �
;

where f ðzÞ ¼ 1
z � 1 for z > 0, and Dij = (xi � xj)2 + (yi � yj)2. The objec-

tive function is thus given by

X
16i<j6N

cijDij þ f
Dij

tij

� �
:

The interpretation here is that the first term is an attractor that
makes the two circles move closer together and pulls them towards
a layout where Dij = 0, while the second term is a repeller that pre-
vents the circles from overlapping. Indeed, if Dij P tij then there is
no overlap between circles and the repeller term is zero or slightly
negative, while the attractor in the objective function applies an
attractive force to the two circles. On the other hand, if Dij < tij then
the repeller term is positive, and it approaches positive infinity as Dij

tends to zero, preventing the circles from overlapping completely.
In summary, the model aims to ensure that Dij

tij
¼ 1 at optimality,

so choosing a < 1 sets a target value tij that allows some overlap of
the areas of the respective circles, which means that a relaxed ver-
sion of the non-overlap requirement of the circles is enforced. In
practice, by properly adjusting the value of a, we achieve a reason-
able separation between all pairs of circles. The complete attractor-
repeller (AR) model as given in [1] is:

min
ðxi ;yjÞ;wF ;hF

X
16i<j6N

cijDij þ f
Dij

tij

� �
; ð1Þ

s:t: xi þ ri 6
1
2

wF and ri � xi 6
1
2

wF ; for i ¼ 1; . . . ;N;

ð2Þ

yi þ ri 6
1
2

hF ; and ri � yi 6
1
2

hF ; for i ¼ 1; . . . ;N;

ð3Þ
wlow

F 6 wF 6 wup
F ; ð4Þ

hlow
F 6 hF 6 hup

F ; ð5Þ

where (xi,yi) are the coordinates of the centre of circle i as previ-
ously defined; wF, hF are the width and height of the facility; and
wlow

F , wup
F , hlow

F , and hup
F are the lower and upper bounds of the width

and the height of the facility, respectively. The first two sets of con-
straints require that all the circles be entirely contained within the
facility, and the remaining two pairs of inequalities bound the
width and height of the facility. (Note that the geometric centre
of the facility outline is at the origin of the x � y plane.)

An important drawback of model (1)–(5) is that the objective
function is not convex, and hence the overall model is not convex.
By modifying it so as to obtain a convex problem, we expect to ob-
tain a relaxation that captures better global information about the
problem. Also, note that there is no force between i and j if
D2

ij ¼ tij=cij. For these reasons, the analysis in [1,2] motivates the
definition of the following generalized target distance Tij:

Tij :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

tij

cij þ e

s
;

where e > 0 is a sufficiently small number such that if Dij � Tij then
Dij �

ffiffiffiffiffiffiffiffiffiffiffi
tij=cij

p
. This target distance takes both the relative size of the
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