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a b s t r a c t

Regularization methods are techniques for learning functions from given data. We consider regulariza-
tion problems the objective function of which consisting of a cost function and a regularization term with
the aim of selecting a prediction function f with a finite representation f ð�Þ ¼

Pn
i¼1cikð�;XiÞ which mini-

mizes the error of prediction. Here the role of the regularizer is to avoid overfitting. In general these
are convex optimization problems with not necessarily differentiable objective functions. Thus in order
to provide optimality conditions for this class of problems one needs to appeal on some specific tech-
niques from the convex analysis. In this paper we provide a general approach for deriving necessary
and sufficient optimality conditions for the regularized problem via the so-called conjugate duality the-
ory. Afterwards we employ the obtained results to the Support Vector Machines problem and Support
Vector Regression problem formulated for different cost functions.

� 2011 Elsevier B.V. All rights reserved.

1. Some elements of statistical learning

Support Vector Machines are techniques for solving problems of learning from a given example data set based on the Structural Risk Min-
imization Principle and they were first mentioned by Vapnik in [22]. The reader is also referred to [21,23] for a deeper insight into this field.

Evgeniou, Pontil and Poggio distinguish in [8] between two types of statistical learning problems: the Support Vector Machines Regression
problem (SVMR) and the Regularization Networks (RN). The problems belonging to the first class have as possible application the approx-
imation and determination of a function by means of a data set. We deal here with a particular case of this problem, the so-called Support
Vector Machines Classification (SVMC).

Consider a given set with n training data {(X1,Y1), . . . , (Xn,Yn)}, where Xi 2 Rk and Yi 2 R; i ¼ 1; . . . ;n; and let F be a space of functions
defined on Rk with real values. The SVMC problem looks for a function f 2 F such that for a previously unknown value X the function f
predicts the value Y. The penalty for predicting f(Xi) having as true value Yi for i = 1, . . . ,n is measured by a so-called cost function v : R2 ! R.

The problem of finding an optimal function f in F is ill-posed since there are infinitely many solutions. In order to get a well-posed prob-
lem, and, consequently, to be able to provide a particular solution, we need some additional a priori information about f. A common one is
the assumption that the function f is smooth, in other words, two similar inputs correspond to two similar outputs. In this way one is able to
control the complexity of f. To this aim one has to introduce a regularization term k

2 Xðf Þ (cf. [2,3,20]), where the regularization parameter
k > 0 controls the tradeoff between the cost function and the regularizer X (cf. [25]). In this context X is also called smoothness functional
and has the desired characteristic of taking high values for non-smooth functions and low values for smooth functions. The following Tik-
honov regularization problem arises

inf
f2F

Xn

i¼1

vðf ðXiÞ;YiÞ þ
k
2

Xðf Þ
( )

; ð1Þ

the objective function of which being called regularization functional.
Further let Hk be a Reproducing Kernel Hilbert Space (RKHS) introduced by a kernel function k : Rk�k ! R (cf. [1]). In the following we ask f

to be an element of Hk. Moreover, we assume that k is symmetric, namely that k(x,y) = k(y,x) for x; y 2 Rk: The kernel function k introduces a
kernel matrix K 2 Rn�n, where k(Xi,Xj) = Kij for i, j = 1, . . . ,n. In this context K, which is a symmetric matrix, is said to be the Gram matrix of k
with respect to X1, . . . ,Xn. A symmetric kernel function k : Rk�k ! R which for all n P 1 and all finite sets fX1; . . . ;Xng � Rk fulfills
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Pn
i;j¼1aiajkðXi;XjÞP 0 for every arbitrary a 2 Rn is called finitely positive semidefinite kernel (cf. [19]). One can easily see that such a kernel

function gives rise to a positive semidefinite Gram matrix K. On the other hand, it is worth noticing that (see [19, Theorem 3.11]) a k which
is either continuous or has a finite domain can be decomposed as k(x,y) = hU(x),U(y)i, where U : Rk ! F is a feature map and F a Hilbert
space, if and only if it is finitely positive semidefinite.

It is well-known that when having a symmetric finitely positive definite kernel k and a corresponding Gram matrix one can find a RKHS
Hk induced by it, such that the so-called reproducing property, namely that f(x) = h f(�),k(x, �)i for all x 2 Rk, is fulfilled (cf. [1]). Shawe-Taylor
and Cristianini have shown in [19] that one can construct a RKHS Hk even for a symmetric finitely positive semidefinite kernel function
such that the reproducing property is valid. More than that, via the so-called representer theorem (cf. [25]) one has that for every minimizer
f of (1) there exists c ¼ ðc1; . . . ; cnÞT 2 Rn such that

f ¼
Xn

j¼1

cjkð�;XjÞ: ð2Þ

This is the setting considered in this paper and in the following we additionally assume that for f 2 Hk the smoothness functional is defined
as Xðf Þ ¼ kfk2

k , where k�kk is the norm in Hk. If for f 2 Hk the vector c 2 Rn is the one that comes from the representation given in (2), then
Xðf Þ ¼ kfk2

k ¼ cT Kc and for all i = 1, . . . ,n it holds f ðXiÞ ¼
Pn

j¼1cjKij ¼ ðKcÞi. Thus the optimization problem (1) can be equivalently written as

inf
c2Rn

Xn

i¼1

vððKcÞi;YiÞ þ
k
2

cT Kc

( )
: ð3Þ

Unfortunately, the most popular and most efficient cost functions used in the literature on machine learning fail to be differentiable (see, for
instance, [8,16,18]). This causes some difficulties when trying to furnish optimality conditions for the above problem. On the other hand,
these functions turn out to be convex in the first variable and, consequently, problem (3) becomes a convex optimization problem. In the
following section we provide a general approach for deriving optimality condition for problem (3) by means of the conjugate duality theory
in convex optimization. The optimality conditions for (3) will be expressed as systems of nonlinear equations involving the conjugates of the
cost functions or, alternatively, via convex subdifferential formulae. As a byproduct we extend in this way the approach presented in [14],
where when dealing with problem (3) the authors impose invertibility for K. We show that, in spite of the fact that we avoid this assumption,
one can deliver handleable optimality conditions for (3), only by exploiting the very strong results of the convex analysis.

The described regularization framework includes many well-known learning methods. Depending on the application one can use dif-
ferent cost functions (see for instance [8,14] for several examples). In section 3 we consider some particular instances of the Support Vector
Machines Classification problem, namely when the output Y takes values in {+1,�1}. In this case we speak about a (binary) classification prob-
lem. In particular we deal with the hinge loss (or soft margin) (cf. [7,22]) vhl : R� R! R, vhl(a,Y) = (1 � (a + b)Y)+, for b 2 R, but also with the
generalized hinge loss (cf. [5]) vghl : R� R! R; vghlða;YÞ ¼ ð1� ðaþ bÞYÞuþ, where u > 1 is given.

In section 4 we turn our attention to the Support Vector Regression problem, which is characterized by the fact that the output Y may take
arbitrary real values. In this context we deal with the following extended loss function vel : R� R! R ¼ R [ f�1g; velða;YÞ ¼ d½�e;e�ðY � aÞ,
where e > 0, as well as with a generalization of Vapnik’s e-insensitive loss introduced by Smola, Schölkopf and Müller in [18], which we de-
scribe in detail in subsection 4.2. Especially by means of the extended loss we succeed in underlining the role of the regularity conditions
when providing optimality conditions even in the context of machine learning. Obviously, via the general approach from section 2 one can
consider also other cost functions suitable for the classification and regression problem.

It is worth to notice that in the investigations made in the sections 3 and 4 we take advantage of the convexity properties of cost func-
tions involved. This fact allows us to employ the convex duality theory and to make use of the well-developed convex subdifferential cal-
culus. On the other hand, this approach suggests the possibility to use nonsmooth and nonconvex cost functions in statistical learning. In
order to provide optimality conditions for the optimization problems arising in this way, one could apply the calculus formulae which exist
in the literature for different subdifferentials. In a first step one could consider locally Lipschitz cost functions in connection with the Clarke
subdifferential (cf. [6]), but also some more general classes of functions in connection with some appropriate subdifferential notions, as one
can find in [10].

The paper is closed by a conclusive section.

2. Notation and preliminary results

For two vectors x; y 2 Rn we denote by xTy their scalar product, where the upper index T transposes a column vector into a row one and
viceversa. By ei, i = 1, . . . ,n, we denote the ith unit-vector in Rn. For a nonempty set D # Rn we denote by dD : Rn ! R the indicator function of
D, which is defined by dD(x) = 0 if x 2 D, being equal to +1, otherwise. Further, by ri (D) we denote the relative interior of the set D, that is the
interior of D relative to its affine hull. For a function f : Rn ! R we denote its effective domain by domðf Þ ¼ fx 2 Rn : f ðxÞ < þ1g and say that
f is proper if dom (f) – ; and f > �1. The (Fenchel-Moreau) conjugate function of f is f � : Rn ! R, defined by f �ðpÞ ¼ supx2RnfpT x� f ðxÞg. We
have the following relation, known as the Young-Fenchel inequality, f(x) + f⁄(p) � pTx P 0 and this is true for all x; p 2 Rn. For x 2 Rn with
f ðxÞ 2 R we denote by @f ðxÞ :¼ fp 2 Rn : f ðyÞ � f ðxÞP pTðy� xÞ 8y 2 Rng the (convex) subdifferential of f at x. Otherwise, we assume by con-
vention that @f(x) = ;. For x 2 Rn with f ðxÞ 2 R one has that

p 2 @f ðxÞ () f ðxÞ þ f �ðpÞ ¼ pT x:

For a linear mapping K : Rn ! Rm we denote by ImðKÞ :¼ fKx : x 2 Rng the image of K. Further, for x 2 R we define x+ :¼max (0,x).
In order to develop a duality theory and to formulate necessary and sufficient optimality conditions for problem (3), we treat first, by

means of some techniques from the convex analysis, the following optimization problem

ðPÞ inf
c2Rn

Xl

i¼1

v iðKcÞ þ gðcÞ
( )

;
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