
Discrete Optimization

An efficient implementation of the robust tabu search heuristic for sparse
quadratic assignment problems

G. Paul ⇑
Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA

a r t i c l e i n f o

Article history:
Received 12 January 2010
Accepted 6 September 2010
Available online 15 September 2010

Keywords:
Combinatorial optimization
Computing science
Heuristics
Tabu search

a b s t r a c t

We propose and develop an efficient implementation of the robust tabu search heuristic for sparse qua-
dratic assignment problems. The traditional implementation of the heuristic applicable to all quadratic
assignment problems is of O(N2) complexity per iteration for problems of size N. Using multiple priority
queues to determine the next best move instead of scanning all possible moves, and using adjacency lists
to minimize the operations needed to determine the cost of moves, we reduce the asymptotic (N ?1)
complexity per iteration to O(N log N). For practical sized problems, the complexity is O(N).

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The quadratic assignment problem (QAP) is a combinatorial
optimization problem first introduced by Koopmans and Beck-
mann (1957). It is NP-hard and is considered to be one of the most
difficult problems to be solved optimally. The problem was defined
in the following context: A set of N facilities are to be located at N
locations. The distance between locations i and j is Di,j and the
quantity of materials which flow between facilities i and j is Fi,j.
The problem is to assign to each location a single facility so as to
minimize the cost

C ¼
XN

i¼1

XN

j¼1

Fi;jDpðiÞ;pðjÞ; ð1Þ

where p(i) represents the location of facility i. It will be helpful to
think of the N facilities and the matrix of flows between them in
graph theoretic terms as a graph of N nodes and weighted edges,
respectively.

There is an extensive literature which addresses the QAP and is
reviewed in Pardalos et al. (1994), Cela (1998), Anstreicher (2003),
Loiola et al. (2007), and James et al. (2009a). With the exception of
specially constructed cases, optimal algorithms have solved only
relatively small instances with N 6 36. Various heuristic approaches
have been developed and applied to problems typically of size
N � 100 or less. One of the most successful heuristics to date for large
instances is robust tabu search, RTS, Taillard (1991). The use of tabu
search for the quadratic assignment problem has been studied

extensively (Drezner, 2005a, Hasegawa et al., 2000, James et al.,
2009a,b, McLoughlin and Cedeno, 2005, Misevicius, 2007, Misevicius
and Ostreika, 2007, Skorinkapov, 1994, and Wang, 2007). Some of the
best available algorithms for the solution of the QAP are the hybrid
genetic algorithms that use tabu search as an improvement mecha-
nism. (See Drezner, 2002, 2003, 2005b,c, 2008, Drezner and Drezner,
2006, Drezner and Marcoulides, 2006, 2009).

Here we will consider the robust tabu heuristic applied to sparse
QAP instances. That is, the number of non-zero entries in the either
the flow matrix and/or the distance matrix is of O(N) as opposed to
O(N2). Without loss of generality we will assume the flow matrix is
sparse. Many real world problems are sparse. In fact, this work was
motivated by the study of random regular sparse graphs. These
graphs are very robust to partitioning and collapse due to removal
of nodes or edges. We are interested in the problem of determining
how to assign the nodes of such a graph to locations in a metric
space such that the total edge length of the graph is minimized;
this problem maps directly to a quadratic assignment problem.

There has been some previous work on sparse quadratic
assignment problems. Milis and Magirou (1995) developed a
Lagrangian-relaxation lower-bound algorithm for sparse problems
and Pardalos et al. (1997) developed a version of their GRASP heuris-
tic for sparse problems. However, to the best of our knowledge, an
efficient implementation of the robust tabu heuristic for sparse
QAP instances has not been proposed.

2. Background-the tabu heuristic

The tabu heuristic for the quadratic assignment problem con-
sists of repeatedly swapping locations of two nodes. A single iter-
ation of the heuristic consists of

0377-2217/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2010.09.009

⇑ Tel.: +1 781 861 6279.
E-mail address: gerryp@bu.edu

European Journal of Operational Research 209 (2011) 215–218

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2010.09.009
mailto:gerryp@bu.edu
http://dx.doi.org/10.1016/j.ejor.2010.09.009
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


(a) Determining the move which most decreases the total cost.
Under certain conditions (see Section 4), if a move which
lowers the cost is not available, a move which raises the cost
is made. So that cycles of the same moves are avoided, the
same move is forbidden (taboo) until a specified later itera-
tion; we call this later iteration the eligible iteration for a
given move. This eligible iteration is traditionally stored in
a tabu list or tabu table.

(b) Making the move.
(c) Recalculating the new cost of all moves.

The process is repeated for a specified number of iterations. Tra-
ditional implementations of robust tabu search require O(N2) oper-
ations per iteration. The complexity of O(N2) is achieved by
maintaining a matrix of the costs D(p,u,v) of swapping u and v
for all u and v, given a current assignment p. The complexity of
updating D(p,u,v) is described in the Appendix A.

The complexity of the each step above is as follows:

(a) O(N2)-all possible N(N � 1)/2 moves are considered. The cost
of each move is retrieved from D(p,r,s)

(b) O(1)-the locations of the two swapped nodes are simply
transposed.

(c) O(N2)-based on the following observations of Taillard (1991):
(i) the cost of moves which do not involve the two nodes in

the previous move can be calculated in time O(1) (see
Appendix A). There are O(N2) of these moves.

(ii) The cost of moves which do involve the two nodes in the
previous move must be calculated from scratch. There
are O(N) of these moves and the complexity of calculat-
ing each is O(N) (see Appendix A).

3. Approach

To reduce the complexity of step (a), instead of scanning all pos-
sible moves, we use multiple priority queues (PQs) to determine the
best move. A priority queue is a data structure for maintaining a set
of elements each of which has an associated value (priority) (see
Cormen et al., 2009). A PQ supports the following operations:

� Insert an item
� Remove an item
� Return the item with the highest value

Priority queues are used to efficiently find an item with the
highest value without searching through all of the items.

The maximum complexity of PQ operations is O(log N). We will
see below that there will be O(N) insertions and deletions in the
PQs for each iteration so the asymptotic complexity of this step
is reduced to O(N log N). Furthermore, we will show that for prob-
lems of any practical size, PQ operations are not the determinant of
total complexity.

The complexity to recalculate the cost of moves in step (c), can
be reduced to O(N) as follows:

� As in the traditional robust tabu implementation, the cost of
moves which do not involve the two nodes in the previous
move can be calculated in time O(1). On average, there are
2hki nodes which are connected to the two nodes in the previ-
ous moves, where hki is the average degree (average number of
nodes adjacent to a given node) of the graph corresponding to
the flow matrix. For each of these 2hki nodes we must calculate
the cost of N � 1 possible moves. Thus, the cost is O(hkiN).
� The cost of moves which do involve the two nodes in the previ-

ous move must be calculated from scratch. There are O(N) of
these moves and the complexity of calculating each is O(hki)

since the cost of a node, u, being in a specific location depends
only on the on-average k nodes adjacent to u.

Thus the complexity of step (c) is reduced to O(N).

4. Implementation

To describe our implementation, we must first describe the
rules for determining the next move of Taillard’s robust tabu heu-
ristic (Taillard, 1991). The following definitions for the possible
state of a potential move are useful:

(i) If the current iteration is less than or equal to the eligible
iteration, the move is ineligible.

(ii) If the current iteration is greater than the eligible iteration,
the move is authorized.

(iii) If the current iteration minus an aspiration constant is
greater than the eligible iteration the move is aspired.

The rules for determining the next move can then be stated as
(Taillard, 1991):

(1) If a move which decreases the lowest total cost found so far
is available, the move which most decreases this total cost is
chosen, independent of whether the move is ineligible,
authorized or aspired.

(2) If no move meets criterion (1), the aspired move, if one is avail-
able, which most decreases the current total cost is chosen.

(3) If no moves meet criteria (1) or (2), the lowest cost autho-
rized move is chosen.

To implement these rules for sparse problems, we use two types
of PQs: delta PQs which contain the cost delta for a given move and
tabu PQs which contain entries ordered by the eligible iteration for
the move. The tabu PQs control the change of state of a move. The
delta PQs determine the lowest cost move in each state. Five PQs
are used:

� ineligible tabu PQ – This PQ contains moves, ordered by eligible
iteration, which are in the ineligible state. This PQ allows us to
efficiently determine when the state of a move can be changed
to authorized.
� authorized tabu PQ – This PQ contains moves, ordered by eligi-

ble iteration, which are in the authorized state. This PQ allows
us to efficiently determine when the state of a move can be
changed to aspired.
� ineligible delta PQ – This PQ contains moves, ordered by the

cost of the move, which are in the ineligible state. This PQ
together with the two other delta PQs allows for efficient deter-
mination of the overall lowest cost move as required by rule 1.
� aspired delta PQ – This PQ contains moves, ordered by the cost

of the move, which are in the aspired state. This PQ allows for
efficient determination of the lowest cost aspired move as
required by rule 2.
� authorized delta PQ – This PQ contains moves, ordered by the

cost of the move, which are in the authorized state. This PQ
allows us to determine the lowest cost authorized move as
needed by rule 3.

As illustrated in Fig. 1, moves are inserted and removed in the
PQs under the following circumstances:

� At initialization all moves are inserted into the ineligible PQs.
� At the beginning of each iteration, any moves on the ineligible

PQs which become authorized, because the iteration has

216 G. Paul / European Journal of Operational Research 209 (2011) 215–218



Download	English	Version:

https://daneshyari.com/en/article/477079

Download	Persian	Version:

https://daneshyari.com/article/477079

Daneshyari.com

https://daneshyari.com/en/article/477079
https://daneshyari.com/article/477079
https://daneshyari.com/

