
Discrete Optimization

A primogenitary linked quad tree approach for solution storage and retrieval
in heuristic binary optimization

Minghe Sun ⇑
Department of Management Science and Statistics, College of Business, The University of Texas at San Antonio, San Antonio, TX 78249, United States

a r t i c l e i n f o

Article history:
Received 22 December 2009
Accepted 22 September 2010
Available online 29 September 2010

Keywords:
Primogenitary linked quad tree
Data structure
Heuristic procedures
Binary optimization
Combinatorial optimization

a b s t r a c t

A data structure, called the primogenitary linked quad tree (PLQT), is used to store and retrieve solutions
in heuristic solution procedures for binary optimization problems. Two ways are proposed to use integer
vectors to represent solutions represented by binary vectors. One way is to encode binary vectors into
integer vectors in a much lower dimension and the other is to use the sorted indices of binary variables
with values equal to 0 or equal to 1. The integer vectors are used as composite keys to store and retrieve
solutions in the PLQT. An algorithm processing trial solutions for insertion into or retrieval from the PLQT
is developed. Examples are provided to demonstrate the way the algorithm works. Another algorithm tra-
versing the PLQT is also developed. Computational results show that the PLQT approach takes only a very
tiny portion of the CPU time taken by a linear list approach for the same purpose for any reasonable appli-
cation. The CPU time taken by the PLQT managing trial solutions is negligible as compared to that taken
by a heuristic procedure for any reasonably hard to solve binary optimization problem, as shown in a
tabu search heuristic procedure for the capacitated facility location problem. Compared to the hashing
approach, the PLQT approach takes the same or less amount of CPU time but much less memory space
while completely eliminating collision.

� 2010 Elsevier B.V. All rights reserved.

Many combinatorial optimization problems are NP hard and,
therefore, are very difficult to solve. Exact algorithms can solve
small problem instances and heuristic procedures are usually em-
ployed for large ones. Researchers have developed many metaheu-
ristic methods, such as simulated annealing (Kirkpatrick et al.,
1983), tabu search (Glover, 1989, 1990a,b; Glover and Laguna,
1997), scatter search (Glover et al., 2000), genetic algorithms
(Holland, 1992), and ant colony optimization (Deneubourg et al.,
1983; Deneubourg and Goss, 1989). These metaheuristic methods
provide frameworks or guidelines in forming a strategy for solving
hard combinatorial optimization problems. To solve a specific type
of problems, a metaheuristic method has to be tailored to form a
specific heuristic procedure to take advantage of the problem
structure. Many heuristic procedures using these metaheuristic
methods have been developed for many hard combinatorial opti-
mization problems. For problems with realistic sizes, heuristic pro-
cedures usually take a very long computation time to find good,
but not necessarily optimal, solutions. In the solution process,
many trial solutions are evaluated.

The purpose of this study is to develop a data structure
approach to store and retrieve trial solutions in heuristic proce-
dures for binary optimization problems, a specific but the most

common type of combinatorial optimization problems. The data
structure is called the primogenitary linked quad tree (PLQT), a
quad tree with special structures. This approach is so efficient that
the computation time it takes is unnoticeable as compared to that
a heuristic procedure takes. Therefore, it is a handy tool for
researchers to use in developing their heuristic procedures for bin-
ary optimization problems. The major contribution of this study is
the application of the PLQT to the storage and retrieval of trial solu-
tions in heuristic procedures for binary optimization problems. An-
other contribution is the development of different ways to
represent binary solutions with integer vectors.

In Section 1, the binary optimization problem and the necessity
for trial solution storage and retrieval are discussed. In Section 2,
alternative ways of representing trial solutions are discussed and
two ways of using integer vectors are proposed. The PLQT and algo-
rithms managing it are described in Section 3. Examples demon-
strating the insertion of integer vectors into and the retrieval of
integer vectors from a PLQT are given in Section 4. Computational
results are presented in Section 5. Concluding remarks and sum-
maries are given in Section 6.

1. Introduction

A binary optimization problem involves a set of objects and a
subset of them meeting certain restrictions needs to be selected

0377-2217/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2010.09.034

⇑ Tel.: +1 (210) 458 5777; fax: +1 (210) 458 6350.
E-mail address: minghe.sun@utsa.edu
URL: http://faculty.business.utsa.edu/msun

European Journal of Operational Research 209 (2011) 228–240

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2010.09.034
mailto:minghe.sun@utsa.edu
http://faculty.business.utsa.edu/msun
http://dx.doi.org/10.1016/j.ejor.2010.09.034
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


based on one or more criteria or objectives. In a project or invest-
ment portfolio selection problem (Stummer and Sun, 2005), for
example, the objects are the projects or investment instruments.
A portfolio is a selected subset. The major objective is the maximi-
zation of the total expected return on investment although there
are other objectives in a multiple criteria problem (Stummer and
Sun, 2005). The restrictions include the limited budgets, and the
diversification and balancing requirements among others. In a
facility location problem (Delmaire et al., 1999; Ducati et al.,
2004; Sun, 2006a, 2009a), as another example, the objects are
the potential sites to locate facilities. A subset of these sites is se-
lected to have the facilities actually established. Each site has a
fixed cost to establish and to operate the facility and has fixed costs
or variable costs to serve the clients, such as transporting the prod-
ucts to the customers. The major objective is to minimize the total
costs. The restrictions are to meet the client demands possibly
within the capacities of the selected facilities. In a variable or fea-
ture selection problem (Sun, 2009b; Sun and Xiong, 2003) in
regression or classification analysis, the objects are the indepen-
dent variables and their functions, such as monomials. A subset
of these variables is selected to fit a regression function or a set
of discriminant functions. The criteria may be the minimization
of the regression or classification errors while avoiding overfitting
by using a minimum number of independent variables.

Common to all binary optimization problems is that the status
of an object i can be represented by a binary variable yi, i.e., yi = 0
if object i is not selected and yi = 1 otherwise. A solution with a se-
lected subset for a problem with n objects can be represented by a
vector of n binary variables y = (y0,y1, . . . ,yi , . . . ,yn�2,yn�1). Each
combination of the n binary variables is a possible solution. Hence,
a problem with n binary variables has 2n possible solutions. How-
ever, usually a small portion of the 2n possible solutions is feasible,
i.e., satisfying all restrictions. In a heuristic procedure, usually a
very small portion of the 2n possible solutions is evaluated. In addi-
tion to binary variables, most problems also involve real, i.e., con-
tinuous, variables. The number of continuous variables is
denoted by n0.

Usually a binary optimization problem can be formulated as a
binary mathematical programming model (Nemhauser and Wol-
sey, 1988; Wolsey, 1998) where a restriction is represented by a
constraint and a criterion is represented by an objective function.
A binary minimization problem with one objective function may
be written as

min f ðx; yÞ ð1Þ
s:t: giðx; yÞP 0 for i ¼ 1; . . . ;g; ð2Þ

x 2 Rn0 ; y 2 Bn: ð3Þ

In the model, x represents the vector of real variables in the
n0-dimensional Euclidean space Rn0 and Bn is the collection of all
ordered n-tuples of 0s and 1s. The model is a pure binary program-
ming model if n0 = 0 and is a mixed binary programming model
otherwise. In this study, n > 0 is assumed.

In a trial solution, the number of binary variables yi with yi = 0 is
denoted by n0 and that with yi = 1 is denoted by n1. Each y 2 Bn

determines a trial solution. Once y is determined, the trial solution
can be evaluated to determine f(x,y). Evaluating a trial solution is
usually very time consuming in the solution process. In a portfolio
selection problem, for example, a linear programming problem
needs to be solved (Stummer and Sun, 2005); in a capacitated facil-
ity location problem (Ducati et al., 2004; Sun, 2009a), a transporta-
tion problem needs to be solved; and in a single source facility
location problem (Delmaire et al., 1999), a generalized assignment
problem, which is itself a binary optimization problem, needs to be
solved, to evaluate a solution. Therefore, each solution needs to be
evaluated at most once in an efficient heuristic solution procedure.

After the evaluation, the solution may be saved or stored and may
be retrieved later if needed. In the solution process using a heuris-
tic procedure, many solutions are evaluated.

When such a problem is solved with a heuristic procedure, the
solution process usually follows a selective trajectory in the solu-
tion space. At a visited solution on the trajectory, a neighborhood
is created by evaluating or retrieving one or more trial solutions.
A move is the transition from the current solution to another in
the neighborhood. A trial solution may be obtained by changing
the value of one binary variable, called a simple move, or by chang-
ing one binary variable from 0 to 1 and another from 1 to 0, called
an exchange or swap move. For each trial solution, the saved solu-
tions may be searched to find out if it has already been evaluated
and saved. If found, the trial solution is retrieved and does not need
to be evaluated again; otherwise, the trial solution is evaluated and
saved. Based on some predefined rules, the procedure selects one
of these evaluated trial solutions as the next solution to be visited
to move to. Once a solution is visited, it should not be visited again.
If a solution is visited the second time, the same trajectory may be
followed again if the predefined rules do not change and, hence,
repetition or cycling may occur. Therefore, measures are usually
taken by heuristic procedures to prohibit the visit of solutions
which have already been visited. For this purpose, the visited solu-
tions need to be memorized in some way.

Hence, there are two purposes for storing the evaluated solu-
tions. One purpose is to save computation time. Once a trial solu-
tion is evaluated, it does not need to be evaluated again and only
needs to be retrieved. The other purpose is to prevent repetition
or cycling. Once a solution is visited, it may not be selected to visit
again. However, storing and retrieving trial solutions should not
take much computation time and memory space for the heuristic
procedure to be efficient.

The PLQT approach developed in this study can be used by any
heuristic procedure for any binary optimization problem. The PLQT
is a new data structure recently developed by Sun (2006b) for fast
access of data, or data with composite keys, in RK for K P 1. It is an
enhancement of the more traditional quad tree data structure (Fin-
kel and Bentley, 1974; Habenicht, 1982, 1991; Sun and Steuer,
1996a,b). Quad trees as data structures were first introduced by
Finkel and Bentley (1974). Among others, quad trees have been
employed in discrete multiple criteria optimization, geometric
information systems, image processing, and computer aided design
and computer aided manufacturing. Compared to the traditional
quad tree, the PLQT uses substantially less computation time and
takes considerably less memory or storage space. Sun (2006b)
showed through computational experiments that the PLQT is much
faster than the traditional quad tree, which is in turn much faster
than the linear list, in identifying, storing and retrieving nondom-
inated solutions in discrete multiple criteria optimization. The
PLQT is even much faster in storing and retrieving trial solutions
in heuristic procedures than in discrete multiple criteria optimiza-
tion because the PLQT does not need to be reconstructed as in the
application reported by Sun (2006b).

2. Integer vector representation of binary solutions

The number of bits of memory used by a computer language to
represent an integer is denoted by b. Most computer languages use
2 or 4 bytes. If 2 bytes are used, b = 16, or if 4 bytes are used, b = 32.
Although both positive and negative integers represented by b bits
can be used to represent solutions, only unsigned integers are used
in the following discussion for easy description. Therefore, the
range of integers a computer can represent is between 0 and
2b � 1 and the maximum number of different integers a computer
can represent is 2b.

M. Sun / European Journal of Operational Research 209 (2011) 228–240 229



Download English Version:

https://daneshyari.com/en/article/477081

Download Persian Version:

https://daneshyari.com/article/477081

Daneshyari.com

https://daneshyari.com/en/article/477081
https://daneshyari.com/article/477081
https://daneshyari.com

