European Journal of Operational Research 206 (2010) 555-561

journal homepage: www.elsevier.com/locate/ejor

Contents lists available at ScienceDirect

European Journal of Operational Research

Discrete Optimization

Online scheduling of malleable parallel jobs with setup times on two

identical machines ™

Shouwei Guo, Liying Kang *

Department of Mathematics, Shanghai University, Shanghai 200444, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 15 April 2009
Accepted 1 March 2010
Available online 6 March 2010

Keywords:
Scheduling

Parallel jobs

Setup times

Online algorithm
Competitive analysis

of two machines.

In this paper we consider online scheduling of malleable parallel jobs on two identical machines, where
jobs arrive over time. Each job J; has an execution time t; = p;/k; + (kj — 1)¢; when it is processed on k;
machines, where p; > 0 and ¢; > 0 are the length and setup time of job J;. The objective is to minimize
the makespan. For the problem with two machines, we present an online algorithm with competitive
ratio of 1 + &, where o = (v/5 — 1)/2. We show that 1 + « is a lower bound on the competitive ratio of
any online algorithm for the problem with m (m > 2) machines. So our algorithm is optimal for the case

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the considered online scheduling problem we are given a set
of independent malleable parallel jobs and a set of identical ma-
chines. Jobs arrive over time. Let] = {J;,/,....J,} be a set of n jobs.
Forj=1,2,...,n, job J; is characterized by three parameters, arri-
val time @; > 0, length p; > 0 and setup time ¢; > 0, which are
not known in advance. Every job becomes available at its arrival
time and each machine can handle at most one job at a time. Since
the jobs are malleable parallel, they may require more than one
machine simultaneously for their processing and they can distrib-
ute their workload among any number of the available machines.
After starting the processing of a job, preemption of its processing
is not allowed. The goal is to minimize the makespan, i.e., the max-
imum completion time. According to the scheduling notation
introduced by Graham et al. [6], this model is denoted by
Pm| online, p-job, a;, cj, malleable|Cpyax.

For an online algorithm, the competitive ratio p is often used to
measure its performance. Given an instance I, the makespan of a
schedule produced by an online algorithm .« is denoted by C¥(I),
and the corresponding optimal makespan is denoted by C*(I).
The competitive ratio p is the smallest number such that
C”(I) < pC*(I) for any instance I. For simplicity, we use C” and

* Research was partially supported by the National Nature Science Foundation of
China (No. 10971131), Shanghai Leading Academic Discipline Project (No. S30104)
and Innovation fund of Shanghai University (No. SHUCX091044).

* Corresponding author. Tel.: +86 21 66135652; fax: +86 21 66133292.

E-mail addresses: guoshouwei@shu.edu.cn (S. Guo), lykang@shu.edu.cn (L.
Kang).

0377-2217/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2010.03.005

C* instead of C”(I) and C*(I) if there is no confusion. An online
scheduling problem has a lower bound p’ on its competitive ratio
if there is no online algorithm with a competitive ratio smaller
than p’. An online algorithm is called optimal if its competitive ra-
tio meets the lower bound.

In scheduling, there are two basic online models: jobs arrive
over time and jobs are presented one by one. In the first case, jobs
are available at their arrival time and an algorithm may delay
scheduling a job while future jobs arrive. In the second case, the
next job will not come until the current job has been scheduled,
so jobs must be scheduled immediately without knowing any fu-
ture jobs.

For the online problem of scheduling non-malleable parallel
jobs on m identical machines where jobs are presented one by
one and the objective is to minimize the makespan, Johannes
[11] presented a 12-competitive algorithm and a lower bound of
2.25. An improved online algorithm with competitive ratio 7 was
provided by Ye and Zhang [21]. This ratio was improved by Ye
et al. [20] and Hurink and Paulus [10]. They independently gave
algorithms with a competitive ratio of 6.6623. The later paper gave
also a 2.8 competitive algorithm for the special case with three ma-
chines. Chan et al. [2] proved that a Greedy algorithm achieved a
competitive ratio 2 on the case of two machines. Hurink and Paulus
[9] showed that 2 is a tight lower bound on the case of two ma-
chines, and they improved the lower bound of the case of m ma-
chines to 2.43 in the same paper. Meanwhile, this was improved
to 2.457 by Kern and Paulus [12].

For the online problem of scheduling non-malleable parallel
jobs on m identical machines to minimize the makespan where
jobs arrive over time, Chen and Vestjens [3] proved a lower bound

http://dx.doi.org/10.1016/j.ejor.2010.03.005
mailto:guoshouwei@shu.edu.cn
mailto:lykang@shu.edu.cn
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

556 S. Guo, L. Kang/European Journal of Operational Research 206 (2010) 555-561

1.347 on the case without preemption, and Johannes [11] showed
that 6/5 is a lower bound on the case where preemption is allowed,
and he proved that a list scheduling algorithm has a competitive
ratio of 2 for both cases. An online algorithm with competitive ratio
2 —1/m was raised by Naroska and Schwiegelshohn [17] for the
model where the processing times of jobs are not known until they
are finished. This algorithm is optimal since Shmoys et al. [18]
showed a lower bound 2 — 1/m on the competitive ratio of any on-
line algorithm. More studies on the topic of parallel machines and
parallel jobs can be found in [4,5,8,13-16,19].

In practice, it is often that some work should be done before we
execute a job. So setup time is a considerable parameter in the
scheduling problems [1,7]. The problem of online scheduling mal-
leable parallel jobs with setup times was studied by Havill and Mao
[7]. The ideal execution time of a malleable parallel job with length
p is p/k if it utilizes k identical machines. However, delivering
information from one machine to the others often prevent actual
execution times from achieving this ideal. They considered setup
time and define the execution time of job J; processed on k; ma-
chines to be t; = p;/k; + (kj — 1)c, where ¢ > 0 is the setup time re-
quired to manage one more processor. At each time a job is
assigned to k; machines, the “master” processor should send a mes-
sage to the other k; — 1 “child” processors. Then p;/k; represents
the parallel computation time and (k; — 1)c represents the time
needed to complete message passing (setup). For the model of
scheduling on m identical machines to minimize the makespan
where jobs arrive over time, they presented an online algorithm
called SET with competitive ratio 4(m — 1)/m for even m > 2 and
4m/(m+ 1) for odd m > 3.

In practise, setup time is often related to not only the machine
environment but also the job itself. Malleable parallel jobs may
have different setup times to be delivered to one more processor.
An exclusive setup time for each malleable parallel job is naturally
to be considered. In this paper we study online scheduling of mal-
leable parallel jobs with different setup times. The execution time of
job J; processed on k; machines is defined as t; = p;/k; + (kj — 1)¢;,
where ¢; is an exclusive setup time of job J;. Jobs arrive over time
and preemption is not allowed. Our goal is to minimize the make-
span. For the case of two identical machines, it is easy to see that
tj = p; when k; = 1 and t; = p;/2 + ¢; when k; = 2. We present an
online algorithm with competitive ratio 1 + « for the case of two
identical machines, where o = (v/5 — 1)/2 is the positive solution
of equation o? 4 o = 1. Furthermore, we show that there is no on-
line algorithm with competitive ratio smaller than 1+ « on the
case of m (m > 2) identical machines. So our online algorithm is
optimal for the case of two machines. Since setup times in our
model may be different and an algorithm may be allowed to delay
scheduling a job, the proof of our lower bound does not apply to
the problem studied by Havill and Mao [7].

2. An on-line algorithm for two machines

In this section we consider the online scheduling of malleable
parallel jobs on two identical machines. We present an online algo-
rithm called STA (scheduling types alternatively) and show that
the competitive ratio of the algorithm is no more than 1 + o. The
following technical lemma is useful in the proof of the main
theorem.

L;mma 1.IfO<X <x, 0<y<y and %g%, where a,b,c,d > 0,
then

. ax+by ax +by

S—7, 2.1
(1) x+dy S v+ dy (2.1)
.. ax+by b
() ordy Sd (2.2)

Proof
(i) ax+by a (bf%)y<g+(bf%‘)y:ax'+by
cx+dy ¢ cox+dy ¢ ox+dy ox+dy
b @ b (a-X by
d o+dy “d ox+dy ox+dy’

where the first inequality holds since b > %, x > x/, and the
second inequality holds since a <%, y <y

(ii) By (i) and x > 0, we have
ax + by o by b

cx+dy Sdy d =

We first identify two types of jobs to simplify the presentation
of the algorithm. Type I jobs are considered as jobs with ‘large’
communication costs compared to the processing time (more pre-
cisely that ¢; > (o — 1/2)p;) and the remaining jobs as type II jobs.
The algorithm always executes type I jobs on one machine and
type II jobs on two machines. Thus, every type I job J; has execution
time t; =p; and every type Il job J; has execution time t; =
pj/2 + ¢ < ap;. In our algorithm, the basic idea is to have ‘long
blocks’ of consecutive jobs of the same type and that type II jobs
have preference over type I jobs if a new ‘consecutive’ block has
to be started. If we start a ‘block’ with type II jobs we continue
scheduling type II jobs as long as no idle times occur. While, if
we schedule type I jobs, we schedule them in an arbitrary order
and continue scheduling type I jobs as long as at least one machine
is busy. The details of the algorithm are presented as follows.

For any given schedule o, let
Uq(t) set of unfinished type I jobs available at time ¢
U,(t) set of unfinished type II jobs available at time t

Algorithm STA

Step 0. Sett=0.

Step 1. Determine U, (t) and Uy (t).

Step 2. If U,(t) = 0, then go to Step 3; otherwise, schedule type I
jobs one by one on two machines until the time t' with
U,(t') = 0. Set t := t', back to Step 1.

Step 3. If U;(t) = 0, then go to Step 4; otherwise, schedule type |
jobs in an arbitrary order until the time t with
Ui (t') = 0. Set t :=t/, back to Step 1.

Step 4. If there are still some jobs to arrive, set t as the arrival time
of the next job and back to Step 1; otherwise, stop and
complete the schedule at time t.

For the schedule produced by Algorithm STA, a part B is defined
as a maximal time interval in which there is no period of idle time
on both machines. A type I block is a maximal time interval that
contains only type I jobs in a part and a type II block is a maximal
time interval that contains only type II jobs in a part. We can get
the following observations.

Observation 1. The schedule produced by Algorithm STA can be
naturally partitioned into N parts. Let By, ..., By be these parts. Every
part B; consists of alternating blocks of different types: type I blocks
and type II blocks. The blocks follow directly after each other and
within type I blocks idle times may occur but not on both machines
simultaneously (see Fig. 1).

Observation 2. All jobs in a type I block (type II block) must arrive at
or after the beginning time of the type Il block (type I block) immedi-
ately scheduled before it, if there is one.

Download English Version:

https://daneshyari.com/en/article/477092

Download Persian Version:

https://daneshyari.com/article/477092

Daneshyari.com

https://daneshyari.com/en/article/477092
https://daneshyari.com/article/477092
https://daneshyari.com

