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a b s t r a c t

In this paper, we study inverse optimization for linearly constrained convex separable programming
problems that have wide applications in industrial and managerial areas. For a given feasible point of
a convex separable program, the inverse optimization is to determine whether the feasible point can
be made optimal by adjusting the parameter values in the problem, and when the answer is positive, find
the parameter values that have the smallest adjustments. A sufficient and necessary condition is given for
a feasible point to be able to become optimal by adjusting parameter values. Inverse optimization formu-
lations are presented with ‘1 and ‘2 norms. These inverse optimization problems are either linear pro-
gramming when ‘1 norm is used in the formulation, or convex quadratic separable programming
when ‘2 norm is used.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Inverse optimization has been studied widely. Let min Pðx; cÞ,
x 2 X, be an optimization problem where X is the feasible region,
and c is an parameter vector representing costs, capacities,
weights, returns, etc. The general optimization problem (also
called forward optimization) is to find an x� 2 X such that the
objective Pðx; cÞ is optimal at x�. The inverse optimization can be
described as follows. Assume that we know an x̂ 2 X and a vector
c which is an estimate to the parameter values of the problem.
We are interested in finding out whether there exist acceptable
values of the parameter vector c, denoted by ĉ, which make x̂ opti-
mal to problem min Pðx; ĉÞ. If the answer is positive, find the vector
ĉ that differs from the vector c as little as possible.

Burton and Toint [10,11] are pioneers working in inverse opti-
mization. In [10,11] they first investigated an inverse shortest
paths problem. Since then, many different inverse optimization
problems (discrete or continuous) have been considered. Zhang
et al. [46] addressed inverse shortest paths problems with ‘1 norm
for p paths using a column generation method. Zhang et al. [47],
and Sokkalingam et al. [39] worked on inverse minimum spanning
tree problems. Zhang and Liu [48,51] studied inverse linear pro-
gramming problems. Yang et al. [49] and Zhang and Cai [50]
worked on inverse maximum flow and minimum cut problems.

Ahuja and Orlin [1,2] also developed a general approach to inverse
linear programming problems and discussed applications to some
special cases. Ahuja and Orlin [3] proposed combinatorial algo-
rithms for inverse network flow problems. Heuberger [19] gave a
survey on inverse combinatorial optimization problems, methods
and results.

While most study on inverse optimization so far focuses mainly
on combinatorial and network optimization, this type of research
has started to expand to nonlinear optimization area. For example,
Iyengar and Kang [24] worked on inverse conic programming
problems. In this paper, we will study inverse problem of another
type of continuous optimization problems: the convex separable
programming (CSP) problems. Separable programs are an impor-
tant class of nonlinear optimization problems which arise from
many industrial and managerial areas, for example, production
and inventory management [5,8,30,44,52], allocation of resources
[5,25,28,53], facility location [42], nonlinear knapsack problems
[7,9,31,35,36,38,40,43], agricultural price-endogenous sector mod-
elling [32], stratified sampling [13], optimal design of queueing
network models in manufacturing [6], computer systems [16],
and so on. Separable programs are nonlinear optimization prob-
lems in which the objective function and/or constraints can be ex-
pressed as the sum of nonlinear functions, and each nonlinear term
involves only one variable. Algorithms for separable programs are
widely studied, and interested readers can refer [21,26,27,
34,41,45] and references therein.

In this paper, we are interested in the CSP problems in which
the objective function has the form

Pn
i¼1cifiðxiÞ where

ci; i ¼ 1;2; . . . ;n, may represent costs, capacities or weights, etc.,
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depending on the particular problems. In fact, objective functions
in most practical separable programs can be expressed in this form.
Some examples of this kind of CSP will be given in Section 2. It will
be assumed that ci > 0 for all i ¼ 1;2; . . . ;n. The objective function
is convex separable when all the functions fiðxiÞ; i ¼ 1;2; . . . ;n, are
so.

We shall study in this paper the inverse optimization for CSP
with linear constraints. We shall first give sufficient and necessary
conditions for a given feasible point of a CSP to be able to become
an optimal solution by adjusting its parameter vector c > 0 to an-
other one, say ĉ > 0. When this condition is satisfied, formulations
of the inverse optimization are presented in which we find the vec-
tor ĉ > 0 closest to c > 0 under the measurement of either ‘1 norm
or ‘2 norm. These inverse optimization problems are either linear
programming problems when ‘1 norm is used, or quadratic convex
separable programming problems when ‘2 norm is used. Hence the
inverse problems can be solved easily. The rest of the paper is or-
ganized as follows. In Section 2, we give some industrial/manage-
rial applications of the inverse CSP, including inverse problems of
quality control problem, portfolio optimization problem, and pro-
duction capacity planning problem. In Section 3, the inverse opti-
mization of CSP with linear equality constraints and nonnegative
restrictions on variables is studied. In Section 4, we consider the in-
verse optimization of CSP with linear inequality constraints and
bounds on variables. Conclusions and further research directions
are given in Section 5.

2. Some applications of separable programming problems and
related inverse optimization

As we mentioned in Section 1, separable programs are widely
applied in industrial/managerial areas. In this section we give some
examples of separable programs arising in practical fields, and
their inverse optimization problems. These include (1) quality con-
trol problems in production systems, (2) portfolio selection prob-
lems, and (3) production capacity planning problem.

2.1. Quality control in production systems

Consider a manufacturer who wants to control the quality level
of production for each time period over a finite planning horizon of
n periods, and the quality level of a production facility is defined as
the probability of producing a perfect unit. The quality control
problem in production systems is to maximize the net profit of
the production system with a limitation in the cost of maintaining
the desired quality level. This problem can be expressed as the fol-
lowing separable program,

QCPS1

max
Pn
i¼1

ciFiðxiÞ

s:t: x 2 Q ¼ x
����Pn

i¼1
bigiðxiÞ 6 D; ‘i 6 xi 6 ui;

�

i ¼ 1;2; . . . ;n
�

8>>>>>>><
>>>>>>>:

ð1Þ

(see [14,37]) where xi denotes the quality level of the production
process during time period i; ci > 0 the expected net profit per unit
produced during period i; FiðxiÞ the expected demand function of
production at period i; bi maintenance cost per working hour at per-
iod i; giðxiÞ expected working hours for maintaining the quality level
xi throughout the period i, (hence bigiðxiÞ is the estimated cost for
maintaining the quality level at xi in time period i) D an upper limit
on the total maintenance cost, and 0 < ‘i 6 xi 6 ui 6 1 for all
i ¼ 1;2; . . . ;n. It is assumed that for any quality level xi in period i,
the demand function FiðxiÞ is concave and increasing with respect

to xi, and the expected working hours giðxiÞ is convex and increasing
with respect to xi.

By setting fiðxiÞ ¼ �FiðxiÞ, we can rewrite the problem as a
minimization problem. In some production systems, manufactur-
ers want the quality levels to be improved at successive time
periods. Such requirements can be expressed by the constraints
xi � xiþ1 6 0. So, we may expand problem (1) to the following
form:

QCPS2
min

Pn
i¼1

cifiðxiÞ

s:t: xi � xiþ1 6 0; i ¼ 1;2; . . . ;n;

x 2 Q:

8>>><
>>>:

ð2Þ

However, the quality level is relatively more difficult to adjust
than the net profit per unit in some systems, and manufacturers
want to make adjustment in the net profit of each period for given
quality levels that are determined by the manufacturer according
to estimations of market demands. This leads to an important
application of inverse optimization to this problem, that is, find
ĉ > 0 which is the closest to the available c > 0 and that makes
the given quality levels optimal. In fact, the inverse problem of
(2) is related to product pricing, since the net profit per unit prod-
uct in each period is related to the prices of the products and qual-
ity levels at different time periods.

Some manufacturers control the production quality level by
minimizing the total maintenance cost, meanwhile asking the total
net profit to meet a minimum requirement. These problems can be
expressed in the following form

QCPS3

min
Pn
i¼1

bigiðxiÞ

s:t: x 2 Q ¼
�

x
����Pn

i¼1
ciFðxiÞP C;

xi � xiþ1 6 0; ‘i 6 xi 6 ui; i ¼ 1;2; . . . ; n
�
;

8>>>>>>><
>>>>>>>:

ð3Þ

where C is the lower bound on the total net profit. The inverse opti-
mization of problem (3) is to find a vector b̂ > 0, the maintenance
cost per working hour for each time period, that is the closest to
the estimation b > 0, and makes the given quality levels optimal in
the sense that they can minimize the total maintenance cost under
the restriction to let the quality level meet the target of total profit.
This inverse problem is related to pricing per working hour of main-
tenance for each period i, since maintenance cost has close relations
to unit prices and different quality levels at different time periods.

2.2. Portfolio optimization

An investor wants to make decision about an investment on n
pre-selected risky assets, for instance, n stocks in a stock market.
Let r �Nðl;RÞ denote the random return vector of the n risky as-
sets that are normally distributed with l ¼ ðl1;l2; . . . ;lnÞ

T as the
expected return vector of the n assets and R ¼ ðrijÞ 2 Rn�n as the
covariance matrix among the asset returns, where the matrix R is
at least positive semi-definite (usually positive definite),
rij; i; j ¼ 1;2; . . . ;n, are covariance between returns of assets i and
j, and rii ¼ r2

i the variance of ith asset’s return. Suppose the investor
has a concave non-decreasing (risk aversion) utility function, and let
xi denote the investment proportion on risky asset i. The portfolio
selection problem for one single period is to make a decision on val-
ues of the variables xi; i ¼ 1;2; . . . ;n, such that the expected return
from the investment is maximized under a risk level acceptable to
the investor. This problem can be expressed as follows:
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