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a b s t r a c t

By incorporating both majorization theory and stochastic dominance theory, this paper presents a gen-
eral theory and a unifying framework for determining the diversification preferences of risk-averse inves-
tors and conditions under which they would unanimously judge a particular asset to be superior. In
particular, we develop a theory for comparing the preferences of different convex combinations of assets
that characterize a portfolio to give higher expected utility by second-order stochastic dominance. Our
findings also provide an additional methodology for determining the second-order stochastic dominance
efficient set.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The pioneer work of Markowitz (1952) and Tobin (1958) on the
mean–variance (MV) portfolio selection is a milestone in modern
finance theory for optimal portfolio construction, asset allocation,
and investment diversification.1 In the procedure, investors respond
to the uncertainty of an investment by selecting a portfolio that
maximizes anticipated profit, subject to achieving a specified level
of calculated risk or, equivalently, minimizes variance, subject to
obtaining a predetermined level of expected gain. However, the dis-
advantage of using the MV criterion2 is that it is derived by assuming
the von-Neumann and Morgenstern (1944) quadratic utility function
and returns being examined are required to be normally distributed
or elliptic distributed (Feldstein, 1969; Hanoch and Levy, 1969; Berk,
1997).

To circumvent the limitations of the MV criterion, academics
recommend adopting the stochastic dominance (SD) approach,
which can be used in constructing a general framework for the

analysis of choice and problems of diversification for risk-averse
investors under uncertainty without any restriction on the distri-
bution of the assets being analyzed and without imposing the qua-
dratic utility function assumption on investors. Academics have
regarded the SD approach as one of the most useful tools for rank-
ing uncertain investment prospects or portfolios because their
rankings have been theoretically justified to be equal to the rank-
ings of the corresponding expected utilities. Hanoch and Levy
(1969) link stochastic dominance to a class of utility functions
for non-satiable and risk-averse investors. Hadar and Russell
(1971) develop the analysis using the concept of stochastic domi-
nance and its applicability to choices under conditions of uncer-
tainty, whereas Tesfatsion (1976) further extends their results for
diversification using a stochastic dominance approach to maximiz-
ing investors’ expected utilities. Readers may refer to Ortobelli Loz-
za (2001) and Post (2008) for an exhaustive overview of other
useful results along these lines.

By combining majorization theory with stochastic dominance
theory, we extend the theory by developing some new results for
choice in portfolio diversification. To specify, we establish some
new theorems to determine the preferences of risk-averse inves-
tors among different diversified portfolios and show the conditions
under which all risk-averse investors would prefer more diversi-
fied portfolios to less diversified ones. Our findings are important
because they permit investors to specialize the rankings, by sec-
ond-order stochastic dominance, from among a wide range of con-
vex combinations of assets, and especially because they have
implications concerning the weights of allocations. Our findings
enable investors to make choices about allocations from their
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1 To enhance the mean–variance portfolio selection, recently Leung and Wong
(2008) apply the technique of the repeated measures design to develop a multivariate
Sharpe ratio statistic to test the hypothesis of the equality of multiple Sharpe ratios,
whereas Bai et al. (2009, forthcoming) develop new bootstrap-corrected estimations
for the optimal return and its asset allocation and prove that these bootstrap-
corrected estimates are proportionally consistent with their theoretic counterparts.

2 This rule provides an excellent approximation to any risk-averse utility function
under some restrictions on the range of return; see Levy and Markowitz (1979) for
more information.
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capital that result in higher expected utilities. This was one of the
topics that Levy (2006) suggested for future research.

In addition, our findings could also be used in determining the
second-order stochastic dominance efficient set. Traditionally,
there are two decision stages in determining the efficient set; see
Bawa et al. (1985). In the first stage, the initial screening of pros-
pects or investments is accomplished by partitioning the feasible
set into the efficient and inefficient sets using a stochastic domi-
nance relation.3 At the second stage, Fishburn’s (1974) concept of
convex stochastic dominance (CSD) is used to eliminate elements
that are not optimal in the sense of CSD. Alternatives that are dom-
inated by convex combinations of other portfolios will be eliminated
from the efficient set as they are classified to be inefficient. In this
context, our findings allow investors to rank convex combinations
of assets by majorization order, which, in turn, implies the rankings
of their preferences of second-order stochastic dominance. Thus, our
findings assist investors in determining the second-order stochastic
dominance efficient set.

Our paper is organized as follows: We begin by introducing def-
initions and notations and stating some basic properties for the
majorization theory and stochastic dominance theory. Section 3
presents our findings on the preferences for risk-averse investors
in their choices of diversified portfolios, and Section 4 offers some
conclusions.

2. Definitions and notations

In this section, we will first introduce some notations and well-
known properties in stochastic dominance theory and majorization
theory that we will use in this paper. Considering an economic
agent with unitary initial capital, in this paper we study the sin-
gle-period portfolio selection for risk-averse investors to allocate
their wealth to the nðn > 1Þ risks without short selling in order
to maximize their expected utilities from the resulting final wealth.
Let random variable X be an (excess) return of an asset or prospect.
If there are n assets ~Xn ¼ ðX1; . . . ;XnÞ0, a portfolio of ~Xn without
short selling is defined by a convex combination, k

!
n0X
!

n, of the n as-
sets ~Xn for any k

!
n 2 S0

n where

S0
n ¼ ðs1; s2; . . . ; snÞ0 2 Rn : 0 6 si 6 1 for any i;

Xn

i¼1

si ¼ 1

( )
ð1Þ

in which R is the set of real numbers. The ith element of k
!

n is the
weight of the portfolio allocation on the ith asset of return Xi. A
portfolio will be equivalent to return on asset i if si ¼ 1 and sj ¼ 0
for all j – i. It is diversified if there exists i such that 0 < si < 1,
and is completely diversified if 0 < si < 1 for all i ¼ 1;2; . . . ;n. As
we study the properties of majorization in this context, without loss
of generality, we further assume that Sn satisfies:

Sn ¼ ðs1; s2; . . . ; snÞ0 2 Rn : 1 P s1 P s2 P � � �P sn P 0;
Xn

i¼1

si ¼ 1

( )
:

ð2Þ

We note that the condition of
Pn

i¼1si ¼ 1 is not necessary. It could be
any positive number in most of the findings in this paper. For con-
venience, we set

Pn
i¼1si ¼ 1 so that the sum of all relative weights is

equal to one. In this paper, we will mainly study the properties of
majorization by considering k

!
n 2 Sn instead of S0

n.
Suppose that an investor has utility function u, and his/her ex-

pected utility for the portfolio k
!
0
nX
!

n is E½uðk
!
0
nX
!

nÞ�. In this context, we
study only the behavior of non-satiable and risk-averse investors

whose utility functions belong to the following classes (see, e.g.,
Ingersoll, 1987):

Definition 1. 4U2 is the set of the utility functions, u, defined in R

such that:

U2 ¼ fu : ð�1ÞiuðiÞ 6 0; i ¼ 1;2g;

where uðiÞ is the ith derivative of the utility function u, and the ex-
tended set of utility functions is:

UE
2 ¼ fu : u is increasing and concaveg:

We note that in the above definition, ‘‘increasing” means ‘‘non-
decreasing”. It is known (e.g., see Theorem 11C in Roberts and Var-
berg, 1973) that u in UE

2 is differentiable almost everywhere and its
derivative is continuous almost everywhere. We note that the the-
ory can be easily extended to satisfy utilities defined in Definition 1
to be non-differentiable.5

There are many ways to order the elements in Sn. A popular one
is to order them by majorization; see, for example, Hardy et al.
(1934) and Marshall and Olkin (1979), as stated in the following:

Definition 2. Let ~an;~bn 2 Sn in which Sn is defined in (2).~bn is said
to majorize ~an, denoted by ~bn�M~an, if

Pk
i¼1bi P

Pk
i¼1ai, for all

k ¼ 1;2; . . . ;n.

Majorization is a partial order among vectors of real numbers.
We illustrate it in the following example:

Example 1. 3
5 ;

1
5 ;

1
5

� �0�M
2
5 ;

2
5 ;

1
5

� �0 because 3
5 >

2
5 and 3

5þ 1
5 P 2

5þ 2
5.

Vectors that can be ordered by majorization have some inter-
esting properties. One of them is a Dalton Pigou transfer, as de-
scribed in the following definition:

Definition 3. 6For any ~an;~bn 2 Sn;~an is said to be obtained from ~bn

by applying a single Dalton (Pigou) transfer, denoted by ~bn!
d
~an, if

there exist h and kð1 6 h < k 6 nÞ such that ai ¼ bi for any
i – h; k; ah ¼ bh � �; and ak ¼ bk þ � with � > 0.

For instance, consider the above example that ~a3 ¼ 2
5 ;

2
5 ;

1
5

� �0 and
~b3 ¼ 3

5 ;
1
5 ;

1
5

� �0, As a1 ¼ b1 � 1
5 ;a2 ¼ b2 þ 1

5, and a3 ¼ b3 ¼ 1
5, from Def-

inition 3, we said that~a3 can be obtained from~b3 by applying a sin-
gle Dalton transfer by setting a1 ¼ b1 � 1

5 and a2 ¼ b2 þ 1
5. Thus, we

write ~b3!
d
~a3.

In this example, we also notice that ~b3 majorizes ~a3. One may
wonder whether there is any relationship between majorization
and a Dalton transfer. To answer this question, we have the follow-
ing theorem:

Theorem 1. Let ~an; ~bn 2 Sn;~bn�M~an if and only if ~an can be obtained
from ~bn by applying a finite number of Dalton transfers, denoted by
~bn!

D
~an.

Readers may refer to Appendix 1 for the proof of Theorem 1.
This theorem states that if~bn majorizes~an, then~an can be obtained
from~bn by applying a finite number of single Dalton transfers, and
vice versa. We illustrate the procedure in the following example:

Example 2. Consider 1
3 ;

1
3 ;

1
3

� �0 and 4
5 ;

1
5 ;0

� �0. As 1
3 ;

1
3 ;

1
3

� �0 is majorized
by 4

5 ;
1
5 ;0

� �0, from Theorem 1, we know that 1
3 ;

1
3 ;

1
3

� �0 can be
obtained by applying a finite number of single Dalton transfers on

4
5 ;

1
5 ;0

� �0. This could be done, for example, by setting
4
5 ;

1
5 ;0

� �0 !d 2
3 ;

1
3 ;0

� �0 !d 1
3 ;

1
3 ;

1
3

� �0. That is, by simply first transferring

3 Readers may refer to Broll et al. (2006), Wong (2006, 2007) and Wong and Chan
(2008) and the references there for more information.

4 We note that if u 2 U2;u is Fréchet differentiable; see, for example, Machina
(1982) for more information.

5 Readers may refer to Wong and Ma (2008) and the references there for more
information. In this paper, we will skip the discussion of non-differentiable utilities.

6 Some academics suggest the reverse direction for the definition of a Dalton Pigou
transfer. In this paper, we follow Ok and Kranich (1998) for the definition.
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