European Journal of Operational Research 199 (2009) 323-333

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor R

Continuous Optimization
Enhanced-interval linear programming

Feng Zhou?, Gordon H. Huang P, Guo-Xian Chen¢, Huai-Cheng Guo **

2 College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
b Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, SK, Canada S4S 0A2
€LMAM and CCSE, School of Mathematical Sciences, Peking University, Beijing 100871, PR China

ARTICLE INFO ABSTRACT

Arﬁclf? history: An enhanced-interval linear programming (EILP) model and its solution algorithm have been developed
Received 23 July 2007 that incorporate enhanced-interval uncertainty (e.g., A*, B* and C*) in a linear optimization framework. As
Accepted 12 December 2008 a new extension of linear programming, the EILP model has the following advantages. Its solution space is

Available online 25 December 2008 absolutely feasible compared to that of interval linear programming (ILP), which helps to achieve insight

into the expected-value-oriented trade-off between system benefits and risks of constraint violations.
Keywords: i The degree of uncertainty of its enhanced-interval objective function (EIOF) would be lower than that
g;;?;i;’iﬁmmmg of ILP model when the solution space is absolutely feasible, and the EIOF's expected value could be used
Uncertainty as a criterion for generating the appropriate alternatives, which help decision-makers obtain non-
Feasibility extreme decisions. Moreover, because it can be decomposed into two submodels, EILP’s computational
Solution algorithm requirement is lower than that of stochastic and fuzzy LP models. The results of a numeric example fur-
Risk-based decision making ther indicated the feasibility and effectiveness of EILP model. In addition, EI nonlinear programming mod-
els, hybrid stochastic or fuzzy EILP models as well as risk-based trade-off analysis for EI uncertainty
within decision process can be further developed to improve its applicability.
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1. Introduction

Many of the input parameters in real-world problems exhibit some level of uncertainty due to the scarcity of data (Dantzig, 1995). Tra-
ditional linear program (LP) models, however, only address practical problems in which all parameters are deterministic. This includes
objective function costs (C), constraint coefficients (A), and right-hand sides (B) (Dantzig, 1955; Chinneck and Ramadan, 2000). Thus, it
is important to find ways of using LP methods with intrinsic uncertainties in probabilistic, possibilistic, and/or interval formats (Acevedo
and Pistikopoulos, 1998; Liu, 2002; Magsood et al., 2005). The methods developed to do this could be grouped into stochastic linear pro-
gramming (SLP), fuzzy linear programming (FLP), interval linear programming (ILP), method, and their hybrid models (Tong, 1994; Huang
et al., 1995; Liu, 2002; Chinneck and Ramadan, 2000; Sahinidis, 2004).

For decision-making problems involving randomness, the SLP model deals effectively with various stochastic uncertainties having
known or subjective probability distributions (Sengupta et al., 2001; Sahinidis, 2004). The expected value model (Max E[CX], s.t AX < B,
X > 0), a type of two-stage or multi-stage stochastic programming, can optimize the expected objective functions subject to some expected
constraints (Huang and Loucks, 2000; Liu, 2002). Chance-constrained programming (Max CX, s.t Pr(AX < B) > «, X > 0) is a second tech-
nique for handling this uncertainty; it employs a confidence level for which the stochastic constraint holds (Charnes and Cooper, 1959;
Huang, 1996). Dependent-chance programming (Max Pr(CX > p), s.t. gi(x,¢£)< 0, X > 0 for j=1,2,...,p) is related to maximizing some
chance functions of events on stochastic sets in an uncertain and complicated system (Liu, 1997, 2002). However, the increasing data
requirements for specifying a discrete or continuous probability density function (PDF) becomes impractical in concrete problems such
as water resources or water quality management planning (Huang, 1998). Even in cases when numerous data are available, the computa-
tional algorithms such as sampling-based decomposition, approximation schemes, and gradient-based algorithms, may result in complex
or nonlinear problems (Birge and Louveaux, 1997). This also restricts the wide application of SLP models (Rockafellar and Roger, 1991;
Huang, 1996).

In FLP problems, the objective function and constraints are treated as fuzzy sets with known or subjective membership functions that
directly influence the model’s solutions (Chang and Wang, 1997; Lodwick and Jamison, 2003). Based on the work of Bellman and Zadeh
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(1970) and Zimmermann (1978), follow-on methods can be classified into two major types: flexible LP and possibilistic LP models (Tanaka
and Asai, 1984). The former deals with uncertainties in right-hand sides (B; Max CX,s.t. AX < B,X > 0), while the latter reflects uncertain-
ties in C as well as constraint coefficients (A, B; MaxEX,s.t..T\X <B,X> 0). In both types of FLP model, the membership function should
represent a satisfactory degree of constraint, the decision-maker’s expectations about the objective function level, and the range of coef-
ficient’s uncertainty (Sahinidis, 2004). However, this has the following shortcomings. It may be difficult to specify membership information
for all parameters A, B, C (Sengupta et al., 2001), and most of the FLP solution algorithms depend on control variables (1) to communicate
uncertainty indirectly into the optimization models (Huang et al., 1995; Inuiguchi and Ramik, 2000).

Interval analysis was introduced by Moore in 1959 as a tool for automatic control of the errors in a computed result (Lodwick and Jam-
ison, 2003), where the interval number (X*) is considered to be an extension of the real numbers and a subset of the real number line
(Moore, 1966). Interval analysis is widely used, and one important application is in solving LP problems with interval coefficients (Ben-Is-
rael and Robers, 1970; Steuer, 1981; Huang and Moore, 1993; Tong, 1994; Chinneck and Ramadan, 2000; Sengupta et al., 2001). This ILP
model, as a potential alternative to SLP or FLP, is able to incorporate interval-number uncertainty into the LP model without any assump-
tion of probabilistic or possibilistic distributions (Oliveira and Antunes, 2007).

Ben-Israel and Robers (1970) first introduced a preliminary ILP model for solving a specific LP model whose constraints were the upper
and lower bounds (Max CX s.t X € {X |B; < AX < B,, X > 0}). Rommelfanger et al. (1989) and Inuiguchi and Sakawa (1995) subsequently
proposed a LP method using only the independent upper and lower bounds of an interval objective function (IOF) (Z*=C'Xand Z~ =CX,).
Chanas and Kuchta (1996) and Sengupta et al. (2001) obtained a satisfactory equivalent system for the ILP problem by considering the sur-
rogate objective functions Max Z*© = Agzj’; 67 + @olcf — c}f)]x}) + (1 =2kl + (¢ — CJT)]xj) and Z=0.5(C" + C")X instead of the
original ones. Huang and Moore (1993) and Tong (1994) proposed a new ILP model and BWC method, respectively. BWC converts Max
ZF=CX s.t X € {X|]A*X < B, X > 0} into two submodels: Z'=CX s.t Xc{X|AX<B, X>0}and Z =C Xs.t Xc{XJA'’X<B", X = 0}.
Chinneck and Ramadan (2000) extended the BWC method to include nonnegative variables and equality constraints. Although the BWC
method does produce the best and worst optimal values, it may result in infeasible decision variable spaces (Huang et al., 1995). Unlike
BWC, Huang and Moore’s (1993) method is defined generally as Max Z* = C*X* s.t X* € {X*|A*X* < B*, X* > 0}, which provides the solutions
of IOF Zoipt = [ngt,ngt} and interval decision variables x;, . = [x;,,,,x,] for Vj (Huang et al., 1995; Huang, 1998). It has three major advan-
tages. First, the ILP model incorporates interval information directly into the optimization process. Second, its solution algorithm has lower
computational requirements than the SLP and FLP models, and third, the interval solutions produce several alternatives that reflect differ-
ent decisions (Huang et al., 1995; Chinneck and Ramadan, 2000).

In all these cases, the two extreme decisions (Z,,. and Zo*pt) simply represent the trade-off between system benefits and risks of A*, B* and
C*'s violations. In the example of municipal waste management in which the objective is to minimize system costs, the decision-maker
choosing the lower bound value Z,, will end up with a lower system cost but also a higher risk of violating the allowable waste-loading
levels (Huang and Moore, 1993). Conversely, the decision to accept a higher system cost by selecting the upper bound value ij[ will cor-
respond to a lower risk. Although decision makers can use Z,,, and Z;, to help understand extreme alternatives, most wish to focus on the
intermediate levels of system costs and risks of violating constraints. Therefore, it is necessary to provide an expected value of the objective
function within a relatively narrow interval. To do this, we need a new kind of enhanced-interval (EI) uncertainty that is different than
random, fuzzy, and interval variables. The EI variable is defined as random variable in which the upper and lower bounds are known
but the PDF is not, although the unknown expected value is considered to lie within the upper and lower bounds. In practice, it is not dif-
ficult to determine the EI parameters and variables such as A*, B*, C* and/or X*. For the LP model under EI uncertainty, we could obtain an
appropriate interval and the expected value of objective function. Moreover, the feasibility of x;,, = [x;,,,X;;,,] for Vj has a direct impact on
generating different decision alternatives, and thus the constraints in the uncertain LP model should ensure that its solution space is
feasible.

As a new extension of interval uncertainty and LP model for generating non-extreme decisions, we define and develop an EI uncertainty
and EI linear programming (EILP) model with its solution algorithm. We explain the EILP model and demonstrate its feasibility using a
numeric example, and compare EILP with the SLP, FLP, and ILP models.

2. Methodology
2.1. Definition of EI uncertainty

In this subsection, we present several definitions of EI uncertainty and compare the four types of uncertainty.

Definition 1. Let (2, ®,Pr) denote a probability space, where € is a nonempty set, @ is a g-algebra of subsets of ©Q, and Pr is called a
probability measure. Random variable y is a measurable function from a probability space (€2, @,Pr) to a bounded, closed subset of real
numbers. Then y* is defined as an enhanced-interval with known upper and lower bounds and an unknown definite PDF whose expected
value E[-] lies between upper and lower bounds:

yo= oy l={seRy <s<y'}, (1)
y<EpyT <yt 2)
®(x) = Pr{mw € Qy(w) < x} = /X ¢(2)dz, 3)

where the PDF ¢(z) : ® — [0, +-00], ® denotes the set of real numbers, y* and y— are the upper and lower bounds of y*, respectively, and
@ : R — [0,1] is a cumulative probability distribution (CDF). When y~ = y*, y* becomes a deterministic number.

Definition 2. Let R* be a set of EI numbers. An EI vector Y* is a matrix whose elements are EI numbers:

Y=yt = lyy .y Vi) Yo e (e @
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