
Discrete Optimization

Improving benders decomposition using a genetic algorithm

C.A. Poojari, J.E. Beasley *

Centre for the Analysis of Risk and Optimisation Modelling Applications (CARISMA), School of Information Systems, Computing and Mathematics, Brunel University,
Uxbridge UB8 3PH, UK

a r t i c l e i n f o

Article history:
Received 14 May 2007
Accepted 31 October 2008
Available online 13 November 2008

Keywords:
Genetic algorithm
Benders decomposition
Mixed-integer linear programs

a b s t r a c t

We develop and investigate the performance of a hybrid solution framework for solving mixed-integer
linear programming problems. Benders decomposition and a genetic algorithm are combined to develop
a framework to compute feasible solutions. We decompose the problem into a master problem and a sub-
problem. A genetic algorithm along with a heuristic are used to obtain feasible solutions to the master
problem, whereas the subproblem is solved to optimality using a linear programming solver. Over suc-
cessive iterations the master problem is refined by adding cutting planes that are implied by the subprob-
lem. We compare the performance of the approach against a standard Benders decomposition approach
as well as against a stand-alone solver (Cplex) on MIPLIB test problems.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

A general mixed-integer linear programming (MILP) problem can be represented as

PMILP Min cxþ fy; ð1Þ
Ax P b; ð2Þ
Bxþ Gy P d; ð3Þ

where x 2 Zn1
þ , y 2 Rn2

þ , n ¼ n1 þ n2. The cost vectors are c 2 Rn1 and f 2 Rn2 , the matrices A 2 Rm1�n1 , B 2 Rm2�n1 , G 2 Rm2�n2 , the right-hand-
sides b 2 Rm1 , d 2 Rm2 .

In this problem we seek to minimise a linear function of the decision vectors (x; y) subject to linear inequality constraints and the
requirement that some of the decision variables must be integer valued. If n1 ¼ n (n2 ¼ 0), then the problem is called a pure integer linear
program (PILP); further if xi 2 {0,1} 8i then the problem is called a zero-one integer program. On the other hand if n2 P 1 then the problem
is called a mixed-integer linear program (MILP).

MILPs are (except for special cases) known to be NP-hard and therefore finding an optimal (at times even a feasible) solution is difficult.
Polyhedral approaches have been increasingly used for MILPs. The main idea is to iteratively strengthen the linear programming relaxation
of the MILP by adding inequalities that are violated by fractional solutions, but are satisfied by integer solutions. This results in a better
description of the convex hull of the problem. Once a complete description of the convex hull in terms of linear inequalities is obtained
(although in practice this may not be achievable) then the resulting problem could be solved as a LP. The optimal solution to the LP would
be the optimal solution to the original MILP. Such polyhedral approaches have been combined with branch and bound to produce branch
and cut, whereas branch and bound has been combined with column generation to produce branch and price. The advantage of these meth-
ods are their mathematical rigor and a guarantee of optimality on termination. However, the large number of cuts or columns which need
to be generated means they can be extremely time consuming.

It is clear that one approach that can be followed is a hybrid approach, which combines the positive features of mathematical program-
ming based ideas with metaheuristics. Metaheuristics such as tabu search, simulated annealing and genetic algorithms have often been
customised for specific problems so as to generate good quality integer solutions. Metaheuristics for specific problems are often designed
such that problem structure is exploited during recursive moves through a search space. However, the suitability of metaheuristics for gen-
eral MILPs (where there is, perhaps, no distinct problem structure) is less well researched. Representing the original problem so as to cus-
tomise it for the moves of a metaheuristic is non-trivial for problems having continuous variables. Also, satisfying problem constraints after
a move is an issue of ongoing research amongst metaheuristics researchers. Puchinger and Raidl (2005), and Raidl and Puchinger (2008)

0377-2217/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2008.10.033

* Corresponding author. Tel.: +44 1895 266219; fax: +44 1895 269732.
E-mail addresses: Chandra.Poojari@brunel.ac.uk (C.A. Poojari), John.Beasley@brunel.ac.uk (J.E. Beasley).

European Journal of Operational Research 199 (2009) 89–97

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

mailto:Chandra.Poojari@brunel.ac.uk
mailto:John.Beasley@brunel.ac.uk
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


discuss different state-of-the-art approaches for combining exact algorithms and metaheuristics. For an example of work applying a genet-
ic algorithm to find a feasible solution for MILPs to enable the tree in a branch and bound process to be pruned, see Nieminen et al. (2003).

In this paper, we develop a hybrid approach that integrates a genetic algorithm (GA) with Benders decomposition. Decomposition based
techniques are helpful to efficiently process the large scale MILPs that often arise in practical applications. In our approach we decompose
the MILP into two smaller problems based on the presence of integer and continuous variables. This decomposition is the same as that
given by Benders (1962). One of these decomposed problems contains all the integer variables, whereas the other problem contains only
continuous variables. We would note here that recently renewed interest in Benders decomposition has been appearing, e.g. Rei et al.
(2006) discuss how local branching can be used to speed Benders decomposition, while Fischetti et al. (submitted for publication) discuss
how a better choice of cuts in Benders decomposition can be made.

GAs are typically more suitable for discrete optimisation problems rather than those having continuous variables. We utilise this and
use a GA to obtain ‘good solutions’ for the decomposed problem containing the integer variables. Cuts are generated as in conventional
Benders decomposition. We iteratively generate feasibility and optimality cuts that approximate the polyhedron of the decomposed prob-
lem to that of the original problem.

We use a GA that can represent and process continuous, general integer and mixed-integer linear mathematical programming problems.
Within the GA, we seek feasible solutions. Thus at successive generations feasible solutions are given higher priority over infeasible ones,
the intention being to have a set of feasible solutions on termination of the GA.

The reason why we have adopted a population based metaheuristic (a genetic algorithm) rather than any other metaheuristic (such as
tabu search or simulated annealing) is that these other metaheuristics are typically single-solution heuristics. That is, they work on a single
solution at a time, progressively moving through the search space based on the current (single) solution. By contrast population based ap-
proaches utilise a number of solutions (effectively simultaneously, e.g. in crossover). Since in our approach (as will become apparent be-
low) each feasible solution gives rise to a cut for the problem it is clear that a metaheuristic that involves more solutions will (other factors
being equal) be preferred. For this reason we have adopted a genetic algorithm (population based metaheuristic).

2. Benders decomposition

The original MILP problem, PMILP, Eqs. (1)–(3), can be decomposed, in a Benders fashion, into two smaller problems. One of these is a
MILP problem having n1 þ 1 variables, n1 integer variables and one continuous variable. We refer to this as the master problem. The other
problem is a LP problem with n2 variables, as part of which n1 integer variables have been fixed to their value in the master problem. We
refer to this as the subproblem.

Benders (1962) showed that the master problem and the subproblem can be solved successively with information being communicated
between them. The integer solution is passed from the master to the subproblem, and the subproblem generates a feasible/optimal cut for
the corresponding integer solution that can then be added to the master problem.

Consider the MILP problem PMILP, the master problem is written as
PMaster Min cxþ #; ð4Þ
Ax P b; ð5Þ
Tsx P ts; s ¼ 1 . . . jSj; ð6Þ
Etxþ # P et ; t ¼ 1 . . . jTj; ð7Þ
x 2 Zn1

þ ; # 2 R; ð8Þ
where S and T denote the set of feasibility and optimality cuts respectively. Eq. (6) corresponds to the feasibility cuts and Eq. (7) the opti-
mality cuts. The continuous variable # takes into account the objective function term fy (Eq. (1)). For a given solution (x̂,#̂) to the master
problem, the subproblem is represented as a LP

PSub Min fy; ð9Þ
Gy P d� Bx̂; ð10Þ
y 2 Rn2

þ : ð11Þ
Note here that the solution (x̂,#̂) to the master problem need only be feasible, there is no requirement to solve the master problem to proven
optimality (Cote and Laughton, 1984).

The dual to this subproblem is

PSub-dual Max pTðd� Bx̂Þ; ð12Þ
pT G 6 f ; ð13Þ
p P 0: ð14Þ

There are two possible cases with respect to PSub-dual:

� it is unbounded, in which case choose any unbounded extreme ray (/̂) and add to S a Benders feasibility cut

/̂Tðd� BxÞ 6 0 ð15Þ
� it is bounded (with optimal value P̂), in which case take an optimal solution (p̂) and add to T a Benders optimality cut

p̂Tðd� BxÞ 6 #: ð16Þ
The pseudocode for the Benders decomposition algorithm is described in Algorithm 2.1. In that algorithm we repeatedly: solve the mas-

ter problem PMaster; then solve the associated dual subproblem PSub-dual; then add either a feasibility or optimality cut as appropriate. The
algorithm terminates either when sufficient iterations (solutions of the master problem) have been performed; or when a computational
time limit has been reached; or when it has converged. At any Benders iteration a lower bound on the optimal solution to the original prob-
lem is given by cx̂þ #̂, and an upper bound on the optimal solution to the original problem is given by cx̂þ P̂. Convergence occurs when the

90 C.A. Poojari, J.E. Beasley / European Journal of Operational Research 199 (2009) 89–97



Download	English	Version:

https://daneshyari.com/en/article/477182

Download	Persian	Version:

https://daneshyari.com/article/477182

Daneshyari.com

https://daneshyari.com/en/article/477182
https://daneshyari.com/article/477182
https://daneshyari.com/

