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a b s t r a c t

The validity of many efficiency measurement methods rely upon the assumption that variables such as
input quantities and output mixes are independent of (or uncorrelated with) technical efficiency, how-
ever few studies have attempted to test these assumptions. In a recent paper, Wilson (2003) investigates
a number of independence tests and finds that they have poor size properties and low power in moderate
sample sizes. In this study we discuss the implications of these assumptions in three situations: (i) boot-
strapping non-parametric efficiency models; (ii) estimating stochastic frontier models and (iii) obtaining
aggregate measures of industry efficiency. We propose a semi-parametric Hausmann-type asymptotic
test for linear independence (uncorrelation), and use a Monte Carlo experiment to show that it has good
size and power properties in finite samples. We also describe how the test can be generalized in order to
detect higher order dependencies, such as heteroscedasticity, so that the test can be used to test for (full)
independence when the efficiency distribution has a finite number of moments. Finally, an empirical
illustration is provided using data on US electric power generation.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The measurement of technical efficiency has been the subject of
many studies since the pioneering work of Farrell (1957). Most of
these studies have made the implicit assumption that the degree
of technical inefficiency of a firm is independent of the inputs
(and output mixes) of the firm.1 However, there are various reasons
why this assumption may be incorrect. For example, Wilson (2003)
notes that in some instances big firms may have access to better
managers and hence are more likely to perform better. Furthermore,
Schmidt and Sickles (1984) argue that if a firm knows its level of
technical inefficiency this should affect its input choices, creating a
potential dependence between the input vector and the efficiency
term.

Wilson (2003) surveys a number of the independence tests that
could be used to test the independence hypothesis in the context of
efficiency measurement. His motivation essentially relates to the
fact that if independence can be assumed, one can implement a
much simpler bootstrapping methodology to construct confidence
intervals for efficiency estimates derived using data envelopment
analysis (DEA). He conducts a Monte Carlo experiment to investi-

gate the small sample properties of four independence testing pro-
cedures (two bootstrap-based tests and two rank-based tests) and
finds that they all have incorrect size properties and poor power
properties when the sample size is not large (n = 70) and the de-
gree of correlation (q) is moderate (q 6 0.4), with the rank-based
tests not performing as well as the bootstrap tests.

In this study we deviate from the Wilson (2003) study two
important ways. First, we discuss two additional situations in
which independence information is valuable – namely stochastic
frontier models and aggregation of efficiency scores. Secondly,
we focus our attention on the hypothesis of uncorrelation (no lin-
ear dependence) as opposed to independence. The advantage of
testing this weaker condition is that we can produce testing proce-
dures which are easy to implement, and (as we show in our Monte
Carlo experiment) have correct size and much stronger power rel-
ative to the independence tests. Of course the downside is that the
uncorrelation test cannot identify non-linear relationships. How-
ever, in the event that the null hypothesis of uncorrelation is re-
jected, one can also conclude that the null hypothesis of
independence is also rejected. Thus providing a valuable pre-test
procedure if independence is the hypothesis of interest.

In this study we discuss three important contexts in which
these properties play a fundamental role. First, in stochastic fron-
tier models (SFM) an uncorrelation assumption is needed for one
to conclude that the corrected ordinary least squares (COLS) esti-
mator provides consistent estimates of the slope parameters
(Kumbhakar and Knox Lovell, 2000). If correlation between the
efficiency term and the regressors arise, we have an endogeneity
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1 This statement assumes output oriented technical efficiency measures are being
estimated. In the event that one is alternatively estimating input oriented technical
efficiency measures, the output levels and the input mixes are the relevant variables.
This is explained further in the discussion below.
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problem. Furthermore, maximum likelihood estimation (MLE) can-
not be used when correlation exists because the increased number
of parameters in the model gives rise to identification problems.
Second, in the aggregation of Farrell type efficiency measures (for
example, see Fare and Grosskopf, 2004; Fox, 2004) the monotonic-
ity property2 of the aggregate industry efficiency indexes holds if
and only if the uncorrelation assumption is satisfied. The failure of
the monotonicity property gives rise to the so called Fox Paradox,
where one can find that individual efficiency scores can all increase
but the measure of overall industry efficiency decreases. Therefore
this paradox can be interpreted as an example of the failure of the
uncorrelation assumption. Third, the uncorrelation assumption is a
necessary condition for independence and this last one is used in
non-parametric frameworks to justify the use of univariate kernel
methods for the estimation of the efficiency distribution (Wilson,
2003; Daraio and Simar, 2005). If independence fails one has to esti-
mate a multi-dimensional density function, leading to the well
known curse of dimensionality problem (Efron and Tibshirani, 1993).

The remainder of this paper is organized into sections. In Sec-
tion 2 we define the production technology and introduce formal
definitions of independence and uncorrelation. Some aggregation
issues and the relations between the uncorrelation assumption
and the monotonicity property are discussed in Section 3. In Sec-
tion 4 the impact of the failure of the uncorrelation assumption
on stochastic frontier models is explicitly discussed. In Section 5
we introduce some statistical procedures to test for uncorrelation
and homoscedasticity. Finally, in Section 6 we conduct a Monte
Carlo experiment and provide an empirical illustration of the prob-
lems discussed using data on the US electricity power generation
industry. Some concluding remarks are then provided in the final
section.

2. The technology plus some definitions

2.1. Stochastic representation of technology

Consider the density function f(x, y) P 0, where x 2 Rk, y 2 Rm

are the input and the output vectors and
R

Rkþm f ðx; yÞdxdy ¼ 1,
where x and y assume non-negative values. We define the support
of the density function as

T ¼ fðx; yÞ 2 Rkþm : f ðx; yÞ > 0g

and its boundary as an intersection between sets

#T ¼ f½T \ clðTÞ� [ ½clðTÞ \ T�g;

where T is the compliment of T and cl(�) is the closure operator. In
production economics we refer to the first set as the Production Set
and to the boundary as the Production Frontier. The following regu-
larity conditions (Kumbhakar and Knox Lovell, 2000; Fare et al.,
1994) are commonly used in production economics: (A1) no free
lunch: if f(x, 0) > 0 and f(0, y) > 0 then y = 0; (A2) the Production
Set is Closed: for a succession of points (xn, yn) ? (x, y), if f(xn,
yn) > 0 "n 2 N then f(x, y) > 0; (in essence, this states that the fron-
tier belong to the production set) 3; (A3) the Production Set is
bounded: for each x 2 Rk

þ exist y: f(x, y) = 0; (A4) strong disposability:
if f(x0, y0) > 0 then f(x1, y1) > 0 for each (�x1, y1) 6 (�x0, y0); (A5)
convexity: if f(x1, y1) > 0 and f(x2, y2) > 0 then f[ax1 + (1 � a)x2, a
y1 + (1 � a)y2] > 0 "0 6 a 6 1.

These are pure statistical restrictions on a stochastic data gener-
ating process (DGP) represented by the density function f(x, y). In
what follows we assume that assumptions A1–A4 hold. In addition,
we assume the following regularity condition on the DGP (Daraio
and Simar, 2005):

� Random Sample: the sample observations (xi, yi), i = 1, . . . ,n are
realizations of identically and independently distributed ran-
dom variables (X, Y) which have probability density function
f(x, y).

2.2. Average technical efficiency, independence, uncorrelation and
homoscedasticity

Let us consider the output oriented radial measure of efficiency
h ¼min h : f x; y

h

� �
> 0

� �
. Before we proceed, it is useful to explicitly

show that it is possible to calculate the efficiency distribution from
the original joint density function f(x, y). An easy way to calculate
the marginal distribution of efficiency is via the method of cylindri-
cal coordinates (Simar and Wilson, 2000). The cylindrical coordi-
nates of a point (x, y) are (s, g, x) where s ¼

ffiffiffiffiffiffiffi
y0y
p

and
tan gj ¼

yj

y1
8j ¼ 1; . . . ; m. The distance between (x, y) and its effi-

cient radial projection on the frontier can be stated in cylindrical
coordinates as h ¼ sðyÞ

sðy=hÞ. Since a point (x, y) is fully represented in
cylindrical coordinates (s, g, x) and we have a biunivocal corre-
spondence between s and h, we can write it as (h, g, x). Then the
density function can be written as

f ðx; yÞ ¼ f ðh; g;xÞ ¼ f ðh j g;xÞf ðg j xÞf ðxÞ: ð1Þ

The marginal efficiency distribution can be calculated by integrat-
ing the density function (1) with respect to x and g:

fhðhÞ ¼
Z Z

f ðh; g; yÞdgdx: ð2Þ

The knowledge of the density function (2) allows one to aggregate
efficiency, or in fact to determine all the moments of its distribu-
tion. We now provide three useful definitions.

Definition 1 (Independence). The efficiency distribution is fully
independent if and only if f(hjg, x) = f(h). Efficiency is independent
from output composition (or output composition independence) if
and only if f(hjg, x) = f(hjx). Furthermore, efficiency is independent
from the input set (or input set independence) if and only if f(hjg,
x) = f(hjg).

Definition 2 (Uncorrelation or linear independence). The efficiency
distribution is fully uncorrelated if and only if E(h jg, x) = E(h). Effi-
ciency is uncorrelated with output composition (or output compo-
sitionuncorrelation) if and only if E(hjg, x) = E(hjx). Furthermore,
efficiency is uncorrelated with the input set (or input set uncorre-
lation) if and only if E(hjg, x) = E(h jg).

Definition 3 (Homoscedasticity). The efficiency distribution is
homoscedastic if and only if Var(hi) = Var(h) or if its variance is con-
stant across observations.

Since VarðhÞ ¼ E2ðhÞ þ E2
1ðhÞ homoscedasticity can be rewritten as4

E2ðh j g;xÞ þ E2
1ðh j g;xÞ ¼ E2ðhÞ þ E2

1ðhÞ ð3Þ

From Eq. (3) it is easy to see that a violation of the uncorrelation
assumption implies (excluding some minor cases) a violation of
the homoscedasticity assumption.

2 Given a vector of individual values and an aggregate index based on this
individual values, the monotonicity property states that if all the individual values
increase also the aggregate index have to increase (Balk, 1995).

3 The closure of the production set (A2) can be also stated (see Daraio and Simar,
2005; Wilson, 2003) in terms of Positiveness: the density function is strictly positive
on the boundary and is continuous in any direction toward the interior (i.e., the
density function is discontinuous on the boundary). 4 Note that the expectations notation is such that E1(y) = E(y1) and E2(y) = E(y2).
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