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Abstract

Two algorithms for the general case of parametric mixed-integer linear programs (MILPs) are proposed. Parametric MILPs are con-
sidered in which a single parameter can simultaneously influence the objective function, the right-hand side and the matrix. The first
algorithm is based on branch-and-bound on the integer variables, solving a parametric linear program (LP) at each node. The second
algorithm is based on the optimality range of a qualitatively invariant solution, decomposing the parametric optimization problem into a
series of regular MILPs, parametric LPs and regular mixed-integer nonlinear programs (MINLPs). The number of subproblems required
for a particular instance is equal to the number of critical regions. For the parametric LPs an improvement of the well-known rational
simplex algorithm is presented, that requires less consecutive operations on rational functions. Also, an alternative based on predictor–
corrector continuation is proposed. Numerical results for a test set are discussed.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematical programs often involve unknown parameters and the task of parametric optimization is, in principle, to
solve the mathematical program for each possible value of these unknown parameters. Discretization of the parameter
range is not rigorous in general, since there is no guarantee for optimality between the mesh points. Moreover, discretiza-
tion on a fine mesh is a very expensive procedure, especially for high dimension parameter spaces. Algorithms for para-
metric optimization typically divide the parameter range into regions of optimality, also called areas [1], or critical
regions [2]. For one parameter the boundary between critical regions is called a breakpoint. For each critical region either
the problem is infeasible or a qualitatively invariant solution, typically a smooth function of the parameters, is optimal.
The notion of qualitatively invariant solution depends on the specific case. In parametric mixed-integer linear programs
(MILPs), the topic of this paper, it means an optimal integer realization along with an optimal basis for the linear program
(LP) resulting with this integer realization.

Parametric optimization has several applications [2] including waste management [3], fleet planning [4], model-predictive
control [5] and process synthesis under uncertainty [6–8]. Recently, Balas and Saxena [9] used good feasible solutions to
parametric MILPs to generate cuts for MILPs. Also recently, Eppstein [10] introduced the notion of inverse parametric
optimization where the values of parameters that result in a given solution are searched for. Wallace [11] has argued that
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parametric optimization is valuable for decision making only when the value of the parameters is not known during the
optimization phase but known during the decision making phase.

In this paper the general case of parametric MILPs is considered

f �ðpÞ ¼ min
x;y
ðcxðpÞÞT xþ ðcyðpÞÞT y

s:t: A1xðpÞxþ A1yðpÞy ¼ b1ðpÞ;
A2xðpÞxþ A2yðpÞy 6 b2ðpÞ;
xL
6 x 6 xU;

x 2 Rnx ; y 2 f0; 1gny ;

ð1Þ

where cxðpÞ 2 Rnx , cyðpÞ 2 Rny , A1xðpÞ 2 Rm1�nx , A1yðpÞ 2 Rm1�ny , A2xðpÞ 2 Rm2�nx , A2yðpÞ 2 Rm2�ny , b1ðpÞ 2 Rm1 , b2ðpÞ 2 Rm2 .
Note that in deviation from the standard form finite upper and nonzero lower bounds on the variables as well as inequality
constraints are allowed, to show how these can be treated efficiently. Note that in some cases the discussion is restricted to
finite bounds xL; xU 2 Rnx , while in other cases infinite bounds are allowed. As is done in most algorithmic contributions,
the host set of the parameter P is assumed to be the interval [0, 1]. This is essentially equivalent to the assumption of a
compact host set, excluding unbounded parameter ranges.

Two interesting special cases of (1), that are often considered in the literature, are the cost-vector case and the right-hand
side case. In both of these cases the matrices A1x;A2x;A1y ;A2y do not depend on the parameter p; in the former case also the
right-hand side vectors b1; b2 are parameter independent, while in the latter case the cost-vectors cx; cy are parameter indepen-
dent. The cost-vector case has the benign property that the feasibility region does not depend on the parameter. As a conse-
quence the optimality regions of a given basis are (convex) polyhedra and the optimal solution function is piecewise-affine and
concave [12]. In the right-hand side case the optimality region of a given basis can be calculated relatively easily [13,14].

When the integer variables in (1) are fixed (to 0 or 1), or relaxed (to ½0; 1�), a parametric LP is obtained, which is an
important problem in its own right, and can also be used as a subproblem for the solution of (1).

Parametric optimization is a mature field. Most of the theoretical properties were established by the 1980’s and in recent
years the focus has been on algorithmic contributions, which is also the focus of this paper. There are several textbooks and
review articles on parametric optimization; Dinkelbach [15] and Gal [2] consider LP; Bank et al. [16] and Fiacco [17] consider
the nonlinear case; Geoffrion and Nauss [18] discuss MILP; Greenberg [19] provides a bibliography of contributions to para-
metric mixed-integer programs. Algorithms for the right-hand side case with an affine dependence on one or many parameters
exist for MILPs [3,7,13,18,20–22] and also for (mixed-integer) nonlinear programs [23–25]. For the cost-vector case of MILPs
with an affine dependence on a single parameter a well-known algorithm is based on intersections of the objective functions of
feasible points [3,26,27]. Note also that in principle (1) can be reformulated to a right-hand side problem [23,25] by introduc-
ing an auxiliary variable z and the constraint z ¼ p; however in general this leads to a nonconvex parametric MINLP.

Based on the possible number of optimality regions, Murty [28] shows that the complexity of parametric optimization
cannot be bounded above by a polynomial even in the right-hand side case of parametric LPs with a single parameter.
Therefore, rather than basing the computational complexity on the size of the instance, it is probably more appropriate
to compare the computational requirement of an algorithm with the computational requirement of solving as many regular
optimization problems (at fixed parameter values) as there are optimality regions. For instance, in the cost-vector case of
MILP with a single parameter the intersection-based algorithm [3,26,27] requires a number of MILP calls that is less than
twice the number of optimality regions of the particular instance.

The algorithmic approaches for parametric MILP can be divided into two broad classes. In the first class, algorithms for
the solution of a regular MILP are altered to solve the parametric MILP. For instance Ohtake and Nishida [20] solve the
right-hand side case of parametric MILP by a branch-and-bound (B&B) on the integer variables with a parametric LP at
each node. Methods based on this principle have the promise of being relatively computationally efficient if the formulated
parametric subproblems are only slightly more expensive than their regular counterparts. The other broad class is to use
MILP calls for fixed parameter values and process the result post-optimaly. This is, for instance, employed in the well-
known intersection-based algorithm for the cost-vector case. Methods based on this principle can take advantage of
state-of-the-art MILP solvers and are also relatively easy to implement.

To our best knowledge no algorithm exists for the solution of the general case of parametric MILPs, apart from our
conference presentations [29,30], and extension of the available algorithms for the right-hand side and cost-vector case
is nontrivial because the general case does not have the benign properties of these special cases. The most relevant contri-
butions are on parametric LPs. Post-optimal sensitivity analysis of the matrix coefficients of nonbasic columns is covered in
linear programming textbooks, e.g., [31]. Freund [32] proposes to obtain post-optimal sensitivity information through
Taylor series expansions and Greenberg [33] considers post-optimal sensitivity analysis from interior solutions via duality.
Gal [2] reviews the case that a single column or a single row of the matrix depends on the parameter; in this case an ana-
lytical inversion of the parametric matrix is possible based on a formula by Bodewig [34]. Dinkelbach [15] proposes an
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