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Abstract

A sophisticated approach for computing the total economic capital needed for various stochastically dependent risk types is the bot-
tom-up approach. In this approach, usually, market and credit risks of financial instruments are modeled simultaneously. As integrating
market risk factors into standard credit portfolio models increases the computational burden of calculating risk measures, it is analyzed
to which extent importance sampling techniques previously developed either for pure market portfolio models or for pure credit portfolio
models can be successfully applied to integrated market and credit portfolio models. Specific problems which arise in this context are
discussed. The effectiveness of these techniques is tested by numerical experiments for linear and non-linear portfolios.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Due to their business activities, banks are exposed to many different risk types. Among these risk types are credit risk,
market risk, operational risk, and business risk. The task of the risk management division is to measure all these risks and
to determine the necessary amount of economic capital which is needed as a buffer to absorb unexpected losses associated
with each of these risks. Most frequently, economic capital is understood as a Value-at-Risk (VaR) number. Thus, it is the
amount of capital needed to absorb unexpected losses within a given time period up to a specified probability.

Predominantly, the necessary amount of economic capital is determined for each risk type separately. That is why the
problem arises how to combine these various amounts of capital to a single number. Within the so-called building–block
approach stipulated by the regulatory authorities, the amount of regulatory capital, which the banks have to hold for the
different risk types, are just added. This is a quite conservative approach because it ignores diversification effects between
the risk types. As a consequence, in general, the true amount of economic or regulatory capital that is needed is
overestimated.

However, the alternative, namely to consider diversification effects to some extent, requires to model the stochastic
dependence between the various risk types. In practice, some kind of heuristics, based on strong assumptions, are often
used to merge the economic capital figures for the various risk types into one overall economic capital figure.1 A theoretical
more sound approach is to link the separately determined marginal distributions of losses resulting from different risk types
by Copula functions (see, e.g. Ward and Lee (2002), Dimakos and Aas (2004), Rosenberg and Schuermann (2006)). How-
ever, the difficulty is to choose the correct Copula function, especially given the limited access to adequate data.

Another more sophisticated approach is to build up models for various risk types by integrating a specific risk type into
existing models for the measurement of another risk type. This approach is pursued in this paper, which deals, more
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specifically, with the integration of market risk into credit portfolio models. Integrated market and credit portfolio models
allow to determine simultaneously, in one common framework, the necessary amount of economic capital needed for the
market risk and for the credit risk of banking book instruments, whereby possible stochastic dependencies between these
two risk components can be taken into account directly. This latter approach is called a bottom-up approach, whereas the
Copula-based approach represents a top-down technique.

For measuring the credit risk inherent in a banking book, a range of models has been developed. Well-known examples
are CreditMetrics by J.P. Morgan Chase, CreditPortfolioView by McKinsey, Portfolio Manager by KMV, or CreditRisk+

by Credit Suisse First Boston. A typical shortcoming of most credit portfolio models is that relevant market risk factors,
such as risk-free interest rates or credit spreads, are not modeled as stochastic variables and hence are ignored during the
revaluation of the credit sensitive instruments at the risk horizon. An exception is the approach Algo Credit developed by
the risk management firm Algorithmics (see Iscoe et al. (1999)). Even the Basel II proposals do not regulate the interest rate
risk of the banking book in a quantitative way, but only qualitatively under pillar II (see Basel Committee on Banking
Supervision (2005)). In a typical credit portfolio model, fixed-income instruments, such as bonds or loans, are revalued
at the risk horizon using the current forward rates and (rating-specific) forward credit spreads for discounting future cash
flows. Even for derivatives with counterparty risk, only single values, so-called loan equivalents, are employed per possible
rating grade of the counterparty at the risk horizon. Thus, the stochastic nature of the instrument’s value in the future that
results from changes in factors other than credit quality is ignored. This may cause an underestimation of the riskiness of
the credit portfolio (see, e.g. Barnhill and Maxwell (2002), Kiesel et al. (2003), Grundke (2005)). An additional consequence
is that correlations between changes of the debtors’ credit quality and changes of market risk factors and hence the expo-
sure at default cannot be integrated into the credit portfolio model. This is especially a problem for market-driven instru-
ments, such as interest rate derivatives, because the exposure at default mainly depends on the stochastic evolution of the
underlying market risk factors. Finally, ignoring relevant market risk factors in credit portfolio models, correlations
between the exposures at default of different instruments, which depend on the same or correlated market risk factors, can-
not be modeled, either.

However, adding market risk factors as additional ingredients of a credit portfolio model, the computational burden of
calculating risk measures increases because the revaluation of the instruments at the risk horizon becomes more complex.
Most standard credit portfolio models rely on Monte Carlo simulations for calculating the probability distribution of the
future credit portfolio value.2 This is already computer-time-consuming for standard credit portfolio models, especially for
inhomogeneous portfolios with many obligors and when percentiles corresponding to high confidence levels have to be esti-
mated. Thus, the need for efficient methods for calculating credit risk measures becomes even more pressing for integrated
market and credit portfolio models.

For standard credit portfolio models, various efficiency enhancing computational approaches have been developed
meanwhile. Among these are, for example, approaches based on Monte Carlo simulations combined with variance reduc-
tion techniques, mainly importance sampling (IS) (for a literature review see the next Section 2), Fourier-based approaches
(see Duffie and Pan (2001), Merino and Nyfeler (2002), Reiß (2003)), computational approaches based on saddlepoint
approximations (see, e.g. Arvanitis et al. (1998), Martin et al. (2001a,b), Gordy (2002), Barco (2004)), or methods which
rely on the assumption that the portfolio is sufficiently large or sufficiently granular so that by the virtue of the (strong) Law
of Large Numbers (or the Central Limit Theorem) approximations of the credit portfolio loss variable are possible (see,
e.g. Finger (1999), Vasicek (1991, 2002), Gordy (2003)).

For integrated market and credit portfolio models, it might suggest itself to simply adjust and to apply these techniques
also to this extended class of portfolio models. However, it has already been reported in the literature that this simple strat-
egy does not always work. For example, Grundke (2007) finds that the Fourier-based approach when applied to an inte-
grated market and credit portfolio model for estimating risk measures does not perform better than a crude Monte Carlo
simulation. In this paper, we analyze the performance of IS as a special variance reduction technique. Monte Carlo sim-
ulations combined with IS are reported to be very flexible in the computation of overall risk measures as well as individual
risk contributions. We transfer an IS technique previously developed for pure market portfolio models as well as an IS
technique previously developed for pure credit portfolio models to the case of integrated market and credit portfolio mod-
els. We find that, when applying these techniques to the extended class of integrated market and credit portfolio models,
specific problems arise which reduce their benefit. These problems are discussed and the effectiveness of these techniques is
tested by numerical experiments for linear and non-linear portfolios.

The paper is structured as follows: in Section 2, an overview on related literature is given. In Section 3, a general frame-
work for an integrated market and credit portfolio model is presented. Besides, a concrete specification of this general
model is described, which afterwards is used for the numerical experiments. In Section 4, two IS techniques are applied
to the general integrated market and credit portfolio model. The first one is a two-step-technique originally developed

2 A prominent exception is the model CreditRisk+ where due to specific assumptions the loss distribution can be computed by recursion.
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