
Full Length Article

Test case minimization approach using fault detection and
combinatorial optimization techniques for configuration-aware
structural testing
Bestoun S. Ahmed a,b,*
a Istituto “Dalle Molle” di Studi sull’Intelligenza Artificiale (IDSIA), USI/SUPSI, Manno (Lugano), Switzerland
b Software Engineering Department, Salahaddin University-Hawler, Erbil, Iraq

A R T I C L E I N F O

Article history:
Received 21 June 2015
Received in revised form
22 October 2015
Accepted 3 November 2015
Available online 14 December 2015

Keywords:
Combinatorial testing
Test case design
Fault seeding
Software mutation testing
Software structural testing
Cuckoo search algorithm

A B S T R A C T

This paper presents a technique to minimize the number of test cases in configuration-aware structural
testing. Combinatorial optimization is used first to generate an optimized test suite by sampling the input
configuration. Second, for further optimization, the generated test suite is filtered based on an adaptive
mechanism by using a mutation testing technique. The initialized test suite is optimized using cuckoo
search (CS) along with combinatorial approach, and mutation testing is used to seed different faults to
the software-under-test, as well as to filter the test cases based on the detected faults. To measure the
effectiveness of the technique, an empirical study is conducted on a software system. The technique proves
its effectiveness through the conducted case study. The paper also shows the application of combinato-
rial optimization and CS to the software testing.

© 2016, The Authors. Publishing services by Elsevier B.V. on behalf of Karabuk University

1. Introduction

Similar to any other engineering process, software develop-
ment is subjected to cost. Nowadays, software testing (as a process
of the software development life cycle) consumes most of the time
and cost spent on software development. This cost may decrease
rapidly as testing time decreases. Most of the time, a software may
be released without being tested sufficiently because of market-
ing pressure as well as the intention to save time and cut costs.
However, releasing low-quality software products to the market is
no longer acceptable because it may cause loss of revenue or even
loss of life. Thus, software testers should design high-quality test
cases that catch most of the faults in the software without taking
more than the scheduled time for testing. Thus, test case minimi-
zation mechanisms play a major role in reducing the number of test
cases without affecting their quality. However, reducing the number
of test cases especially in configurable software systems is a major
problem.

In recent years, configurable software systems have gained par-
amount importance in the market because of their ability to alter
software behavior through configuration. Traditional test design tech-

niques are useful for fault discovery and prevention but not for fault
elimination because of the combinations of input components and
configurations [1]. We consider that all configuration combina-
tions lead to exhaustive testing, which is impossible because of time
and resource constraints [2,3]. The number of test cases could be
minimized by designing effective test cases that have the same effect
as exhaustive testing.

Strategies have been developed in the last 20 years to solve the
aforementioned problem. Among these strategies, combinatorial
testing strategies are the most effective in designing test cases for
the problem. These strategies help search and generate a set of tests,
thereby forming a complete test suite that covers the required com-
binations in accordance with the strength or degree of combination.
This degree starts from two (i.e., d = 2, where d is the degree of
combinations).

We consider that all combinations in a minimized test suite is a
hard computational optimization problem [4–6] because searching
for the optimal set is a nondeterministic polynomial time (NP)-hard
problem [5–9]. Thus, searching for an optimum set of test cases can
be a difficult task, and finding a unified strategy that generates
optimum results is challenging. Two directions can be followed to
solve this problemefficiently and to find a near-optimal solution. The
first uses computational algorithms with a mathematical arrange-
ment; the other uses nature-inspiredmeta-heuristic algorithms [10].

Using nature-inspired meta-heuristic algorithms can generate
more efficient results than computational algorithms with a

* Tel.: +41 779158530.
E-mail address: bestoun@idsia.ch.
Peer review under responsibility of Karabuk University.

http://dx.doi.org/10.1016/j.jestch.2015.11.006
2215-0986/© 2016, The Authors. Publishing services by Elsevier B.V. on behalf of Karabuk University

Engineering Science and Technology, an International Journal 19 (2016) 737–753

Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: ht tp : / /www.elsevier.com/ locate / jestch

Press: Karabuk University, Press Unit
ISSN (Printed) : 1302-0056
ISSN (Online) : 2215-0986
ISSN (E-Mail) : 1308-2043

Available online at www.sciencedirect.com

ScienceDirect

HOSTED BY

mailto:bestoun@idsia.ch
http://dx.doi.org/10.1016/j.jestch.2015.11.006
http://www.sciencedirect.com/science/journal/22150986
http://http://www.elsevier.com/locate/jestch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2015.11.006&domain=pdf

mathematical arrangement [10,11]. In addition, this approach ismore
flexible than others because it can construct combinatorial sets with
different input factors and levels. Thus, its outcome is more appli-
cable because most real-world systems have different input factors
and levels.

Developed by Xin-She Yang and Suash Deb [12], the cuckoo search
(CS) algorithm is a new algorithm that can be used to efficiently solve
global optimization problems [13]. CS can solve NP-hard prob-
lems that cannot be solved by exact solution methods [14]. This
algorithm is applicable and efficient in various practical applica-
tions [9,13,15–17]. Recent evidence shows that CS is superior to other
meta-heuristic algorithms in solving NP-complete problems
[9,13,16,17].

Although combinatorial testing proves its effectiveness in many
researches in the literature, evidence showed that there are weak
points in this testing technique [18]. It supposes that the input factors
have the same impact of the system. However, practically the test
cases have different impact and some of the test casesmay not detect
any fault. In other words, most of the faults may be detected by a
fraction of the test suite. Hence, there should be a mechanism to
filter the test suite based on the fault detection strength of each test
case. Success to do so will lead to further optimize the generated
test suite by the combinatorial strategy. This paper presents a tech-
nique to overcome this problem systematically. It should be noted
that there could be constraints among the input configuration of
the software-under-test. This is out of the scope of this paper;
however, the method could be applicable for this issue too.

The rest of the paper is organized as follows: Section 2 pres-
ents the mathematical notations, definitions, and theories behind
the combinatorial testing. Section 3 illustrates a practical model of
the problem using a real-world case study. Section 4 summarizes
recent related works and reviews the existing literature. Section 5
discusses the methodology of the research and implementation. The
section reviews CS in detail and discusses how the combinatorial
test suites are generated using such an algorithm. Section 6 con-
tains the evaluation results. Section 7 gives threats to validity for
the experiments and case study. Finally, Section 8 concludes the
paper.

2. Combinatorial optimization and its mathematical
representation

A future move toward combinatorial testing involves the use of
a sampling strategy derived from a mathematical object called cov-
ering array (CA) [19]. In combinatorial testing, a CA can be
demonstrated simply through a table that contains the designed test
cases. Each row of the table represents a test case, and each column
is an input factor for the software-under-test.

This mathematical object originates essentially from another
object called orthogonal array (OA) [20]. An OAλ (N; d, k, v) is an
N × k array, where for every N × d sub-array, each d-tuple occurs
exactly λ times, where λ = N/vd; d is the combination strength; k is
the number of factors (k ≥ d); and v is the number of symbols or
levels associated with each factor. In covering all the combina-
tions, each d-tuple must occur at least once in the final test suite
[21]. When each d-tuple occurs exactly once, λ = 1, and it can be un-
mentioned in the mathematical syntax, that is, OA (N; d, k, v). As
an example, OA (9; 2, 4, 3) contains three levels of value (v) with a
combination degree (d) equal to two, and four factors (k) can be gen-
erated by nine rows. Fig. 1(a) illustrates the arrangement of this array.

The main drawback of OA is its limited usefulness in this appli-
cation because it requires the factors and levels to be uniform, and
it is more suitable for small-sized test suites [22,23]. To address this
limitation, CA has been introduced.

CA is another mathematical notation that is more flexible in rep-
resenting test suites with larger sizes of different parameters and

values. In general, CA uses the mathematical expression CAλ (N; d,
k, v) [24]. A CAλ (N; d, k, v) is an N × k array over (0, . . ., v − 1) such

that every B b bd= ∈
−{ }⎛

⎝⎜
⎞
⎠⎟

{ }−0 1
0 1

, ,
, ,

…
… k d

d
is λ-covered and every

N × d sub-array contains all ordered subsets from v values of size
d at least λ times [25], where the set of column B = {b0, . . ., b
d-1} ⊇ {0, . . ., k − 1}.To ensure optimality, we normally want d-tuples
to occur at least once. Thus, we consider the value of λ = 1, which
is often omitted. The notation becomes CA (N; d, k, v) [26]. We
assume that the array has size N, combination degree d, k factors,
v levels, and index λ. Given d, k, v, and λ, the smallest N for which
a CAλ (N; t, k, v) exists is denoted as CANλ (d, k, v). A CAλ (N; d, k, v)
with N = CANλ (d, k, v) is said to be optimal as shown in Eq. 1 [27].
Fig. 1(b) shows a CA with size 9, which has 4 factors each having 3
levels with a combination degree equal to 2.

CAN d k v N CA N d k v, , min : , , ,() = (){ }� (1)

CA is suitable when the number of levels v is equal for each factor
in the array. When factors have different numbers of levels, mixed
covering array (MCA) is used. MCA is notated as MCA (N, d, k, (v1,
v2, v3. vk)). It is an N × k array on v levels and k factors, where
the rows of each N × d sub-array cover all d-tuples of values from
the d columns at least once [2]. For more flexibility in the nota-
tion, MCA can be represented as MCA (N; d, v k)) and can be used
for a fixed-level CA such as CA (N; d, v k) [8]. Fig. 1(c) illustrates an
MCA with size 9 that has 4 factors: 2 of them having 3 levels each
and the other 2 having 2 values each. In addition, Fig. 2 shows an
example CA (4; 2, 23) of the way the d-tuples are generated and
covered using CA.

3. Problem definition through a practical example

With the development of communication systems, mobile phones
are among the latest industry innovations and a common mode of
communication among humans. Various operating systems have
been developed for these devices as platforms for performing basic
tasks, such as recognizing inputs, sending outputs, keeping track
of files, and controlling peripheral devices. This development has
paved the way for the emergence of smart phones. Smart phone
applications or “apps” installed on mobile platforms perform useful
tasks. Android is an important platform that includes a special-
ized operating system and an open-source development
environment.

In controlling the behavior of a smart phone, many configura-
tion options must be adjusted in the Android unit. In executing the
running apps on a variety of hardware and software platforms, this
adjustment of options plays an important role. Some smart phones,
for example, have a physical keyboard, whereas others have a soft
keyboard. Fig. 3 shows a sample of the resource configuration file

OA (9; 2, 4, 3) CA (9; 2, 4, 3) MCA (9; 2, 4, 32 22)
k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4
1 1 1 1 1 3 3 3 2 1 1 2
2 2 2 1 3 2 3 1 2 2 2 1
3 3 3 1 1 1 2 1 3 3 2 2
1 2 3 2 1 2 1 2 1 3 1 1
2 3 1 2 3 1 1 3 1 1 2 1
3 1 2 2 2 1 3 2 1 2 1 2
1 3 2 3 3 3 2 2 3 2 1 1
2 1 3 3 2 3 1 1 3 1 1 1
3 2 1 3 2 2 2 3 2 3 1 2

(a) (b) (c)

Fig. 1. Three different examples to illustrate OA, CA, and MCA.

738 B.S. Ahmed / Engineering Science and Technology, an International Journal 19 (2016) 737–753

Download English Version:

https://daneshyari.com/en/article/477472

Download Persian Version:

https://daneshyari.com/article/477472

Daneshyari.com

https://daneshyari.com/en/article/477472
https://daneshyari.com/article/477472
https://daneshyari.com

