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A B S T R A C T

In the present investigation, an oscillating motion of unsteady Burger’s fluid in a circular cylinder was
modeled with different pressure waveforms. Three different waveforms are considered: the case of a trap-
ezoidal, triangular and sinusoidal waveform. Analytical solutions of velocity and temperature distribution
are obtained for an oscillating laminar flow, which can be used to analyze the effects of flow type on
the heat transfer performance. The limiting cases have been considered to examine the heat transfer per-
formance of four different non-Newtonian fluids. Results show that the heat transfer of the oscillating
flow depends on the fluid material parameter, Prandtl number, amplitude oscillating waveform and radial
coordinate. The trapezoidal and sinusoidal waveforms of oscillating motion can result in a higher heat
transfer performance.

© 2016, The Authors. Publishing services by Elsevier B.V. on behalf of Karabuk University

1. Introduction

Ruckmongathan [1] showed that besides the multisteps, other
waveforms like trapezoidal and triangular exist in electronics for
reducing power dissipation in liquid crystal displays. Most of the
electronic components and systems continue reduction in size while
growing in energy density resulting in the need for more efficient
thermal management. Oscillating heat cylinder occurs in many elec-
tronic devices, and most of the interest in this subject is the ability
to establish extra-high effective thermal and manage high energy
rich in heat fluxes [2–6]. Yu et al. [7] developed an analytical so-
lution to determine pulsating laminar heat convection in a circular
tube with constant heat flux. The results show that both the tem-
perature profile and the Nusselt number fluctuate periodically about
the solution for steady laminar convection, with the fluctuation am-
plitude depending on the dimensionless pulsation frequency, the
amplitude of the pressure, and the Prandtl number. Wang and Zhang
[8] analyzed convection heat transfer of pulsing turbulent flow in
a pipe with constant wall temperature and high velocity oscillat-
ing amplitudes. Their results showed that the heat transfer
enhancement is principally impacted by Womersley number and
velocity oscillation amplitude. Pendyala et al. [9] conducted exper-

imental studies on the oscillation flow and heat transfer in a vertical
tube with a constant amplitude. The results indicated that the in-
fluence of an externally imposed periodic oscillation on the heat
transfer is stronger at lower flow rates. Akdag and Ozguc [10] ana-
lyzed experimentally the heat transfer flow with constant heat flux
and oscillating flow inside a vertical annular liquid column. The
results demonstrated that heat transfer increases with increasing
both the amplitude of the oscillation and frequency. Liu et al. [11]
solved the energy equation of circular micro-channels, which con-
siders axial heat conduction, velocity slip, temperature jump, viscous
dissipation and thermal entrance effect. The design criterion for
whether the axial heat conduction and viscous dissipation should
be considered in engineering is given by studying their contribu-
tions to average Nusselt number.

Yin and Ma [12] reported the analytical result on an oscillating
capillary tube in Newtonian laminar pulsating flows driven by a si-
nusoidal waveform. Their results show that the oscillating frequency,
amplitude, and Prandtl number, are significant factors affecting the
heat transfer performance of an oscillating flow in a capillary tube.
Yin and Ma [13] investigated Newtonian flow in a tube driven by
a triangular pressure waveform and showed how the oscillating flow
could result in a different heat transfer coefficient with the corre-
sponding result of a sinusoidal pressure waveform. Abdulhameed
et al. [14] proposed the mathematical modeling of unsteady second
grade fluid flowing in a capillary tubewith sinusoidal pressure wave-
form and non-homogenous boundary conditions. Exact analytical
solutions for the velocity profiles have been obtained in explicit forms
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using finite Hankel transform. The solutions are written as the sum
of the steady and transient solutions for small and large times. For
large value of times, the starting solution reduces to the well-
known periodic solution that coincides with the corresponding
solution of a Newtonian fluid. Khalid et al. [15] studied the problem
of unsteady MHD free convection flow of Casson fluid past over an
oscillating vertical plate embedded in a porous medium. The gov-
erning equations were solved using the Laplace transform technique
and exact solutions for velocity and energy are obtained. Gul et al.
[16] analyzed the problem of unsteady thin film flow of a second
grade fluid over a vertical oscillating belt. The governing equation
for velocity field was solved analytically using Adomian decompo-
sition method (ADM) and Optimal asymptotic method (OHAM).

As mentioned above, the previous literature have focused on the
Newtonian and second-grade fluids at a sinusoidal and triangular
waveform effect on the heat transfer performance of oscillating flow
in a capillary tube. The oscillating flow non-Newtonian Burgers’ fluid
at a trapezoidal, triangular and sinusoidal waveform has not been
investigated before. It has been demonstrated that the oscillating
heat tube using the thermally excited oscillating motion can sig-
nificantly enhance the heat transfer performance (Yin and Ma [13]).
The unanswered questions regarding trapezoidal, triangular and si-
nusoidal waveforms in Burgers’ fluid made it necessary to study the
effect of oscillating motion on the heat transfer performance of os-
cillating flow in a circular cylinder. In the current investigation, a
Burgers’ fluid of an oscillating flow with trapezoidal, triangular and
sinusoidal waveforms is modeled using an infinite Fourier series.
Using the constant heat flux boundary condition, analytical solu-
tions of velocity and temperature distribution have been obtained.
The effects of waveform frequency, waveform amplitude, and Pr
number on the heat transfer performance of oscillating flow are ana-
lyzed. To demonstrate the unique feature of trapezoidal waveform
effect, the sinusoidal waveform and triangular effect on the tem-
perature of the oscillating flow are presented as well.

2. Governing equation of Burgers’ fluid

Burgers’ model has the ability in successfully capturing various
non-Newtonian strange features, e.g. shear thinning/thickening and
display of elastic effects. Therefore, it has been the subject of many
investigations covering various facets [17–21].

The constitutive equations for an incompressible homoge-
neous Burgers’ fluid are given by:
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where T is the Cauchy stress tensor, − pI is the indeterminate spher-
ical stress, S is the extra-stress tensor, λ1 is the relaxation time, λ2
is the material constant of Burgers’ fluid, d

dt is the material time dif-
ferentiation, L is the velocity gradient, T is the transpose operator,
μ is the dynamic viscosity, A is the first Rivlin-Ericksen tensor and
λ3 is the retardation time.

The above model includes special cases, the Oldroid-B
model for λ2 0=( ), the Maxwell model for λ λ2 3 0= =( ), the second-
grade model for λ λ1 2 0= =( ) and the linear viscous model
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where the velocity and temperature fields are assumed to be of the
form:

u a= ( ) = ( )u r t z r tz, , , , .Θ Θ (4)

Under the above considerations, Eq. (3) gives the following dimen-
sional governing equations
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The boundary conditions corresponding to Eqs. (5) and (6) are
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3. Trapezoidal pressure waveform

The oscillating Burgers’ flow shown in Fig. 1 is driven by pres-
sure difference with a trapezoidal waveform as in Fig. 2 of amplitude
γ and frequency ω, i.e.
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Here, we need to solve Eqs. (5) and (6) subject to Eqs. (7) and
(8) in the case where pressure gradient is given by Eq. (9).

Consider the following nondimensional quantities
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Using Eq. (10) in Eqs. (5) and (6), the dimensionless momentum and
energy equations (after dropping the * notation):
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Fig. 1. The physical model configuration.
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