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Abstract

This study addresses the problem of minimizing total tardiness on a single machine with unequal release dates. Dom-
inance properties established in previous literatures and herein are adopted to develop branch and bound and heuristic
procedures. Computational experiments were conducted to evaluate the approaches. The results revealed that the branch
and bound algorithm is efficient in solving hard problems and easy problems that involve up to 50 and 500 jobs, respec-
tively. The computational effectiveness of the heuristic is also reported.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This work considers the scheduling of n indepen-
dent jobs on a single machine to minimize total tar-
diness with unequal release dates. Each job i has a
release date ri, a processing time pi and a due date
di. A job’s tardiness Ti is defined as T i ¼ max
f0;Ci � dig, where Ci is the job’s completion time.
According to the tardiness criterion, no benefit is
gained from completing jobs early and a delay leads
to a proportional penalty. The objective is to mini-
mize the penalty over all jobs

Pn
i¼1T i.

The total tardiness problem on a single machine
has received considerable attention and has been

shown to be NP-complete. Many priority rules have
been developed to solve the static problem.
Emmons [9] derived rules for establishing domi-
nance among elements within an n-job set. Accord-
ing to that study, he showed that the shortest
processing time (SPT) sequence is optimal if all jobs
have positive tardiness and the earliest due date
(EDD) sequence is optimal if no more than one
job has positive tardiness. These rules have been
used to restrict the search and the optimal solution
was found through a branch and bound algorithm.
Rinnooy Kan et al. [15] established four theorems
for the general non-decreasing cost function. Lawler
[10] developed a pseudo-polynomial algorithm for
solving the problem under the assumption that the
weighting of jobs is agreeable with the processing
time. Potts and Van Wassenhove [12] utilized
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Lawer’s decomposition theorem in combination
with Schrage and Baker’s dynamic programming
to develop an efficient algorithm that can solve
problems up to 100 jobs. Baker and Bertrand [5]
compared priority rules such as EDD, SPT, CON
(common due date), SLK (equal slack), TWK (total
work time) and MDD (modified due date) and
found that MDD outperformed all of the others.
Sen et al. [16] established certain precedence rela-
tions among jobs using Emmons’ results and
described an implicit enumeration scheme which
requires O(n2) computer storage. Using Lagrangian
relaxation, Potts and Van Wassenhove [13] obtained
a lower bound and used it in a branch and bound
algorithm. Rachamadugu [14] identified a condition
for characterizing adjacent jobs in an optimal
sequence for the weighted tardiness problem and
indicated that the MDD rule is a special case of this
condition. He also identified a set of circumstances
under which the first job in an optimal sequence
can be determined without fully solving the prob-
lem. Abdul-Razaq et al. [1] surveyed algorithms
on tardiness in a single machine. Panwalkar et al.
[11] presented a heuristic algorithm which yielded
better results than the heuristics proposed by Wilk-
erson–Irwin (W–I), Holsenback–Russell (H–R), and
also better than the API heuristics. Alidaee and
Gopalan [2] showed that the heuristic algorithm
presented by Panwalkar et al. [11] is only one of
many for implementing the MDD rule.

The total tardiness problem with unequal job
release dates is much more difficult to solve than
those with equal job release dates. Chu and Port-
man [8] showed that the problem can be simplified
by using corrected due dates: if rj þ pj > dj then dj

takes the value rj þ pj. They identified a sufficient
condition for local optimality. On the basis of this
condition, they define a new dominant subset of
schedules and proposed several new dominant
approximate algorithms. Chu [7] also proposed
some dominance properties, and provided a polyno-
mially computed lower bound for this problem.
Based on the results, he constructed a branch and
bound algorithm to solve the problem, which was
tested on hard problems that involved 30 jobs and
on relatively easy problems with up to 230 jobs.
Akturk and Ozdemir [4] presented new dominance
rules by considering the time-dependent orderings
between each pair of jobs. Their dominance rule
developed provides a sufficient condition for local
optimality. According to their results, they showed
that if any sequence violated the dominance rule,

then switching the violating jobs could reduce, or
at least maintain the total weighted tardiness. They
introduced an algorithm based on the dominance
rule and compared it with many heuristics. Baptiste
et al. [6] presented a branch-and-bound to minimize
total tardiness with arbitrary release dates. They
introduced new lower bound and generalize some
well-known dominance properties. Their computa-
tional results showed that their procedure can
solved problem as large as 500 jobs with some 60
jobs instances remaining open.

2. Dominance properties

Two propositions, on which the exact algorithms
are based, are first proposed. The current decision
point is denoted by t and A(t) is defined as the set
of available unscheduled jobs at time t; B(t) as the
set of unavailable and unscheduled jobs at time t,
and U(t) as the set of unscheduled jobs at time t.
Therefore UðtÞ ¼ AðtÞ [ BðtÞ;CiðpÞ the completion
time of the ith position job in schedule p.

Proposition 1. Number the unscheduled jobs in

ascending order of ri, breaking ties in favor of the
job with the smallest processing time. A set of jobs

fi; iþ 1; . . . ; kg form a block F if

(1) Ci�1ðpÞ 6 ri;
(2) Cj�1ðpÞ > rj; j 2 fiþ 1; iþ 2; . . . ; kg;
(3) CkðpÞ 6 rkþ1:

Then, considering the job in F in the first

unscheduled position in an optimal sequence suffices.

Proof. Assume that job j 2 F and job i 62 F , since
Cj < ri, therefore scheduling job j in the first
unscheduled position does not increase tardiness in
a given sequence. h

Proposition 2. If one of the following conditions

hold; ðaÞ i; j 2 AðtÞ and dj P maxðt;maxk2UðtÞrkÞþP
k2UðtÞpk; ðbÞ i 2 AðtÞ; j 2 BðtÞ; and dj P max

ðt;maxk2UðtÞrkÞ þ
P

k2UðtÞpk; ðcÞ i; j 2 B(t),{r}_{i}<
rj; and dj P maxðt;maxk2UðtÞrkÞ þ

P
k2UðtÞpk; then

job i precedes job j:

Proof. Proof by the pairwise interchange method is
easy.

Tables 1 and 2 summarize various dominance
properties developed in the literatures as well as the
aforementioned properties. Table 1 presents the
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