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Abstract

In this paper, a class of finely discretized Semi-Infinite Programming (SIP) problems is discussed. Combining the idea of
the norm-relaxed Method of Feasible Directions (MFD) and the technique of updating discretization index set, we present
a new algorithm for solving the Discretized Semi-Infinite (DSI) problems from SIP. At each iteration, the iteration point is
feasible for the discretized problem and an improved search direction is computed by solving only one direction finding
subproblem, i.e., a quadratic program, and some appropriate constraints are chosen to reduce the computational cost.
A high-order correction direction can be obtained by solving another quadratic programming subproblem with only equal-
ity constraints. Under weak conditions such as Mangasarian–Fromovitz Constraint Qualification (MFCQ), the proposed
algorithm possesses weak global convergence. Moreover, the superlinear convergence is obtained under Linearly Indepen-
dent Constraint Qualification (LICQ) and other assumptions. In the end, some elementary numerical experiments are
reported.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Optimization problems arising in engineer design often belong to the class of Semi-Infinite Programming
(SIP) problems. For the sake of exposition, a simple example is given as follows

SIP min f ðxÞ
s:t: U½0;1�ðxÞ 6 0;

ð1:1Þ
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with

U½0;1�ðxÞ , sup
x2½0;1�

/ðx;xÞ;

where f : Rn ! R is continuously differentiable and / : Rn � ½0; 1� ! R is continuously differentiable with re-
spect to x.

In recent decades, many efforts have been made in the researches of SIP. Especially since 1990s, the research
of SIP has made a great development both in algorithm theory and performing algorithm. As to the early
works of smooth SIP, Ref. [1] made an analysis in detail. Subsequently, basing on methods for smooth
SIP, some authors proposed some algorithms for solving SIP, such as [2–6]. In fact, since entropy function
is presented (see [7,8]), maximum entropy principle has been gradually applied to SIP, and the relative works
are very abundant (see [9–11] etc.).

In fact, the methods of discretization are also effective for solving SIP. Many globally convergent algo-
rithms are based on approximating U½0;1�ðxÞ by means of progressively finer discretization of the interval
[0,1] (see e.g. [12–17]). For example, given any q 2 N n f0g, the interval [0,1] can be discretized into the fol-
lowing finite set

X ¼ 0;
1

q
;
2

q
; . . . ;

q� 1

q
; 1

� �
;

which is also called discretization index set. The constraint of SIP is approximated accordingly by a sequence
of constraints /ðx;xÞ 6 0; 8x 2 X: Thus, in the algorithms [12,17], solving SIP problem can be substituted by
solving the following problem of the form

DSI min f ðxÞ
s:t: /ðx;xÞ 6 0 8x 2 X;

ð1:2Þ

which is said the Discretized Semi-Infinite (DSI) problem. Obviously, the algorithms [12–17] depend heavily
on being able to efficiently solve problem DSI. Meanwhile, we note that q reflects the discretization level of
DSI, and it can be progressively increased (see, e.g. [12,15–17]). The overall performance of these algorithms
are crucially dependent upon the performance at each discretization level, especially when q becomes large.
For example, in [12], the discretization is progressively refined and the corresponding problem is solved to
a progressively better accuracy. Convergence of the algorithm to stationary points of SIP is proven. In addi-
tion, Ref. [16] proposes a simple modification scheme of the algorithm [15], and the iteration point Xk is up-
dated every time the dicretization is refined, and the scheme [16] constructs an infinite sequence {Xk} and every
accumulation point of this sequence is a Kuhn–Tucker point for SIP.

Although problem DSI has the same form as a general inequality constrained optimization problem

MC min f ðxÞ
s:t: /jðxÞ 6 0; j ¼ 1; 2; . . . ;m ðm ¼ qþ 1Þ;

there are some difference between DSI and MC. The main difference is that problem DSI has ‘‘continuous’’
dependence of the constraint function on the index. An obvious consequence of this continuity is that a fine
discretization produces ‘‘neighboring constraints’’ which are very similar, or numerically even identical. In
other words, the constraints in DSI are ‘‘sequentially related’’ in the sense that the values taken by /i are typ-
ically close to those taken by /i+1. This can have advantages and disadvantages for numerical methods.

Of course, problem DSI involves only a finite number of smooth constraints and in theory can be solved by
classical inequality constrained optimization technique. However, we note that when the discretization is fine,
i.e., q is very large, the number of constraints becomes large, but only a small portion of the constraints are
active at the solution. Suitably taking advantage of this situation may lead to substantial computational sav-
ing. Early efforts at employing such a scheme see [12,16], in which DSI is solved by means of first-order
method of feasible directions. In [12], based on ideas of Zoutendijk, at iteration k, a search direction is com-
puted by using only the gradients rx/ðxk;xÞ at all points x 2 X satisfying /ðxk;xÞ > ��, where � > 0 is
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