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Abstract

Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization for representing continuous
chance variables in influence diagrams. Also, MTE potentials can be used to approximate utility functions. This paper
introduces MTE influence diagrams, which can represent decision problems without restrictions on the relationships
between continuous and discrete chance variables, without limitations on the distributions of continuous chance variables,
and without limitations on the nature of the utility functions. In MTE influence diagrams, all probability distributions and
the joint utility function (or its multiplicative factors) are represented by MTE potentials and decision nodes are assumed
to have discrete state spaces. MTE influence diagrams are solved by variable elimination using a fusion algorithm.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An influence diagram is a compact graphical representation for a decision problem under uncertainty. Ini-
tially, influence diagrams were proposed as a front-end for decision trees (Howard and Matheson, 1984). Sub-
sequently, Olmsted (1983) and Shachter (1986) developed methods for evaluating an influence diagram
directly without converting it to a decision tree. These methods assume that all uncertain variables in the
model are represented by discrete probability mass functions (PMF’s). Several improvements to solution pro-
cedures for solving discrete influence diagrams have been proposed (see, e.g., Shenoy, 1992; Shachter and
Ndilikilikesha, 1993; Jensen et al., 1994; Madsen and Jensen, 1999; Lauritzen and Nilsson, 2001; Madsen
and Nilsson, 2001).

Shachter and Kenley (1989) introduced Gaussian influence diagrams, which contain continuous variables
with Gaussian distributions and a quadratic value function. In this framework, chance nodes have conditional
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linear Gaussian distributions, meaning each chance variable has a Gaussian distribution whose mean is a lin-
ear function of the variable’s parents and whose variance is a constant. This framework does not allow discrete
chance nodes; however, it does allow chance variables whose distributions are conditionally deterministic lin-
ear functions of their parents.

Poland and Shachter (1993) introduce mixture of Gaussians influence diagrams, which allow both discrete
and continuous nodes where continuous variables are modeled as mixtures of Gaussians. In this framework,
instantiating all discrete nodes reduces the model to a Gaussian influence diagram. The influence diagram
must satisfy the condition that discrete chance nodes cannot have continuous parents. In this model, a qua-
dratic value function is specified along with a utility function which represents risk-neutral behavior or a con-
stant risk aversion. Poland (1994) proposes a procedure for solving such influence diagrams which uses
discrete and Gaussian operations and reduces continuous chance variables before discrete chance variables.
Madsen and Jensen (2005) describe a new procedure for exact evaluation of similar influence diagrams that
contain an additively decomposing quadratic utility function.

Monte Carlo methods have also been proposed for solving decision problems with continuous and discrete
variables. Bielza et al. (1999) uses Markov chain Monte Carlo methods to solve single stage problems with
continuous decision and chance nodes. Charnes and Shenoy (2004) solve multiple stage decision problems
using a multi-stage Monte Carlo sampling technique that takes advantage of local computation to limit the
number of variables sampled at one time.

Mixtures of truncated exponentials (MTE) potentials are suggested by Moral et al. (2001) and Rumı́ (2003)
as an alternative to discretization for solving Bayesian networks with a mixture of discrete and continuous
chance variables. In this paper, we propose MTE influence diagrams, which are influence diagrams in which
probability distributions and utility functions are represented by MTE potentials. We solve MTE influence
diagrams using the fusion algorithm proposed by Shenoy (1993) for the case where the joint utility function
decomposes multiplicatively.

The remainder of this paper is organized as follows. Section 2 introduces notation and definitions used
throughout the paper. Section 3 defines MTE potentials. Section 4 reviews the operations required for solving
an MTE influence diagram. Section 5 presents details of a method for approximating joint utility functions
with MTE utility potentials. Section 6 contains an adaptation of Raiffa’s (1968) Oil Wildcatter problem, which
is represented and solved using an MTE influence diagram. Finally, Section 7 summarizes and states some
directions for future research.

2. Notation and definitions

This section contains notation and definitions used throughout the paper.

2.1. Notation

Variables will be denoted by capital letters, e.g., A;B;C. Sets of variables will be denoted by boldface
capital letters, Y if all are discrete chance variables, Z if all are continuous chance variables, D if all are deci-
sion variables, or X if the components are a mixture of discrete chance, continuous chance, and decision vari-
ables. In this paper, all decision variables are assumed to be discrete. If X is a set of variables, x is a
configuration of specific states of those variables. The discrete, continuous, or mixed state space of X is
denoted by XX.

MTE probability potentials and discrete probability potentials are denoted by lower-case greek letters, e.g.,
a, b, c. Discrete probabilities for a specific element of the state space are denoted as an argument to a discrete
potential, e.g. dð0Þ ¼ P ðD ¼ 0Þ. MTE utility potentials are denoted by ui, where the subscript i indexes both
the initial MTE utility potential(s) specified in the influence diagram and subsequent MTE utility potentials
created during the solution procedure.

In graphical representations, decision variables are represented by rectangular nodes, discrete chance vari-
ables are represented by single-border ovals, continuous chance variables are represented by double-border
ovals, and utility functions are represented by diamonds.
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