On the conjecture of Delorme, Favaron and Rautenbach about the Randić index

Ljiljana Pavlović *
Faculty of Science and Mathematics, Department of Mathematics, Radoja Domanovića 12, Kragujevac, Serbia and Montenegro

Received 29 September 2004; accepted 27 February 2006
Available online 8 June 2006

Abstract

Let $G(k, n)$ be the set of connected graphs without multiple edges or loops which have n vertices and the minimum degree of vertices is k. The Randić index $\chi=\chi(G)$ of a graph G is defined by: $\chi=\sum_{(u v)}\left(\delta_{u} \delta_{v}\right)^{-1 / 2}$, where δ_{u} is the degree of vertex u and the summation extends over all edges $(u v)$ of G. In this paper we prove the conjecture of Delorme, Favaron and Rautenbach about the graphs for which the Randić index attains its minimum value when $k=\left\lfloor\frac{n}{2}\right\rfloor$. We show that the extremal graphs must have $n-k$ vertices of degree k and k vertices of degree $n-1$. © 2006 Elsevier B.V. All rights reserved.

Keywords: Quadratic programming; Randić index; Kuhn-Tucker theorem

1. Introduction

Let $G(k, n)$ be the set of connected graphs without multiple edges or loops which have n vertices and the minimum degree of vertices is k. If u is a vertex of G, then δ_{u} denotes the degree of the vertex u, that is the number of edges of which u is an endpoint. Denote further by $(u v)$ the edge whose endpoints are the vertices u and v and by n_{i} the number of vertices of degree i. In 1975 Randić proposed a topological index, suitable for measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons. The Randić index $\chi=\chi(G)$ of a graph G defined in [17] is: $\chi=\sum_{(u v)}\left(\delta_{u} \delta_{v}\right)^{-1 / 2}$, where the summation extends over all edges $(u v)$ of G. Randić himself demonstrated [17] that his index is well correlated with a variety of physico-chemical properties of alcanes. χ became one of the most popular molecular descriptors to which two books are devoted [10,12]. Initially the Randić connectivity index was studied only by chemists [10,11], but recently it attracted the attention also of mathematicians.

One of the mathematical questions asked in connection with χ is which graphs in a given class of graphs have maximum and minimum χ values [2]. In [6] Fajtlowitcz mentions that Bollobás and Erdős asked for

[^0]the minimum value on the Randić index for the graphs in $G(k, n)$. The solution of such problems turned out to be difficult, and only a few partial results have been achieved so far. In [2] Bollobás and Erdős found the extremal graph when $k=1$. It is a star. For $k=2$ the problem is solved in [9] and the extremal graph is a complete split graph, that is, it has to have $n_{2}=n-2$ and $n_{n-1}=2$. In these papers a graph theoretical approach has been used. In other papers $[3-5,7,8]$ a linear programming and a quadratic programming technique [14] for finding extremal graphs has been used. In $[15,16]$ the problem is solved for $k=1$ and $k=2$ respectively using linear programming. Delorme, Favaron and Rautenbach gave a conjecture about this problem [9]. The conjecture is that the Randić index for graphs in $G(k, n)$, where $1 \leqslant k \leqslant \frac{n}{2}$ attains its minimum value for the graph $K_{k, n-k}^{*}$ which arises from complete bipartite graph $K_{k, n-k}$ by joining all pairs of vertices in the partite set with k vertices by a new edge. In this paper we prove this conjecture when $k=n / 2$ (n is an even number) or $k=(n-1) / 2(n$ is an odd number). The more general $(1 \leqslant k \leqslant n-2)$ and precise conjecture about the Randic index is given in [1].

2. A quadratic programming model of the problem

At first, we will give some linear equalities and nonlinear inequalities which must be satisfied in any above mentioned graph. Denote by $x_{i, j}\left(x_{i, j} \geqslant 0\right)$, the number of edges joining the vertices of degrees i and j. The mathematical description of the problem (P) is

$$
\min \quad \chi=\sum_{\substack{k \leqslant j \leqslant n-1 \\ i \leqslant j \leqslant n-1}} \frac{x_{i, j}}{\sqrt{i j}}
$$

subject to:

$$
\begin{align*}
& 2 x_{k, k}+x_{k, k+1}+x_{k, k+2}+\cdots+x_{k, n-1}=k n_{k}, \\
& x_{k, k+1}+2 x_{k+1, k+1}+x_{k+1, k+2}+\cdots+x_{k+1, n-1}=(k+1) n_{k+1}, \\
& x_{k, k+2}+x_{k+1, k+2}+2 x_{k+2, k+2}+\cdots+x_{k+2, n-1}=(k+2) n_{k+2}, \tag{A}\\
& \vdots \\
& x_{k, n-1}+x_{k+1, n-1}+x_{k+2, n-1}+\cdots+2 x_{n-1, n-1}=(n-1) n_{n-1}, \\
& n_{k}+n_{k+1}+n_{k+2}+\cdots+n_{n-1}=n, \tag{B}\\
& x_{i, j} \leqslant n_{i} n_{j} \text { for } k \leqslant i \leqslant n-1, \quad i<j \leqslant n-1 \tag{C}
\end{align*}
$$

and

$$
\begin{equation*}
x_{i, i} \leqslant\binom{ n_{i}}{2} \quad \text { for } k \leqslant i \leqslant n-1 \tag{D}
\end{equation*}
$$

(A)-(D) define a nonlinearly constrained optimization problem. With regard to (A), Randić index is

$$
\begin{equation*}
\chi=\frac{n}{2}-\frac{1}{2} \sum_{\substack{k \leqslant i \leqslant n-1 \\ i \leqslant j \leqslant n-1}}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{j}}\right)^{2} x_{i, j} \tag{1}
\end{equation*}
$$

and we will use further this expression for the Randić index.

3. Results

We will consider the case 1: $k=\frac{n}{2}$ for an even n and case 2 : $k=\frac{n-1}{2}$ for an odd n.
Theorem 1. Let $G(k, n)$ be a set of connected graphs without multiple edges or loops which have n vertices and the minimum degree of vertices is k. If $k=\left\lfloor\frac{n}{2}\right\rfloor$, then the minimum value of the Randić index for graphs in $G(k, n)$ is

https://daneshyari.com/en/article/477803

Download Persian Version:

https://daneshyari.com/article/477803

Daneshyari.com

[^0]: * Tel.: +381 34363780 .

 E-mail address: pavlovic@knez.uis.kg.ac.yu

