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Abstract

The m-machine permutation flowshop problem with the total tardiness objective is a common scheduling problem,
which is known to be NP-hard. Here, we develop a branch and bound algorithm to solve this problem. Our algorithm
incorporates a machine-based lower bound and a dominance test for pruning nodes. We undertake a numerical study
that evaluates our algorithm and compares it with the best alternative existing algorithm. Extensive computational
experiments indicate that our algorithm performs better and can handle test problems with n 6 20.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the permutation flowshop problem, each of n jobs has to be processed on machines 1, . . ., m in that
order. The processing times of each job on each machine are known. At any time, each machine can process
at most one job and each job can be processed on at most one machine. Once the processing of a job on a
machine has started, it must be completed without interruption. Also, each job must be processed in the
same order at every machine. The usual objectives are the minimization of the make-span, flow-time,
tardiness, lateness, and the number of jobs late (see Pinedo [13] for a review of the general flowshop prob-
lem). Here, the objective is to minimize the total tardiness. Tardiness equals the amount by which a job�s
completion time exceeds its due date.
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Schedules where each job must be processed in the same order at every machine are called permutation

schedules. When m 6 2, the restriction to such schedules is harmless; however, when m > 3, there may exist
a general schedule whose total tardiness is strictly less than the total tardiness of any permutation schedule
(see [13]). Finding such a schedule is often computationally impractical; moreover, as discussed in Kim [8]
there are many real situations where only permutation schedules are feasible. Most approaches to the m
machine flowshop problem restrict attention to permutation schedules.

The general m machine flow time problem with the total tardiness time objective is NP-hard in the or-
dinary sense for m = 1 and NP-hard in the strong sense for m P 2 (the special case where the due dates are
equal to 0 is NP-hard in the strong sense for m P 2): see Appendix D of [13]. Consequently, there has been
great interest in developing heuristic solutions [5–7,16,22]. See [10] for more details on heuristic approaches
and other general issues.

Most optimal algorithms for single machine problems combine dynamic programming or branch and
bound with decomposition properties developed by Lawler [12], Potts and Wassenhove [15] and Szwarc
[18]. Harikawa [4] proposes an effective algorithm, based on Lawler�s decomposition theorem. Szwarc
and Mukhopadhyay [20] and Tansel [21] develop branch and bound algorithms incorporating decomposi-
tion properties, which can handle problem with over 100 jobs. Recently, Szwarc et al. [19] employ an im-
proved decomposition rule, which allows them to solve problems with 300 jobs.

Only a few articles deal with optimal algorithms for multiple machine problems. Kim [7] and Sen et al.
[17] apply branch and bound to two machine problems. Kim [8] applies branch and bound algorithm to
general m machine problems using a special branching scheme, which he calls ‘‘backward branching’’. In
his scheme, a node corresponds to a partial sequence of jobs placed at the end of a whole job sequence.
When a node branches, one or more nodes are defined by placing one more job in front of the partial
sequence associated with the current branch node. After characterizing properties of nodes, Kim derives
lower bounds for the branch and bound algorithm together with a dominance rule. The dominance rule
leads to a problem size reduction procedure, which sometimes yields a problem with a smaller n.

In Section 2, we briefly describe the problem and derive a new machine based lower bound. Our bound
employs estimates of the earliest start time for jobs assigned to each position in the job sequence. (These
estimates were derived in Chung et al. [1], which dealt with the flow-time objective.) Section 3 presents a
dominance test, which helps to prune nodes. An outline of the algorithm appears in Section 4. Section 5
reports on a numerical study that evaluates our algorithm and compares it with Kim [8]—the best alterna-
tive existing algorithm. Extensive computational experiments involving over 40,000 test problems suggest
that our algorithm performs better and can handle problems with n 6 20. Section 6 states our conclusions.

2. The problem description and a lower bound

Branch and bound algorithms are commonly applied to the permutation flowshop problem, which is
known to be NP hard. The effectiveness of a branch and bound algorithm is heavily influenced by its lower
bounds. Such bounds are more useful when they are tighter and easier to compute. In this section, we de-
velop a useful machine-based lower bound.

Consider the search tree for our algorithm [11]. The root node B represents the null schedule. Every other
node represents a partial schedule r = (r(1), . . .,r(s)), indicating that job r(j) occupies the jth position on each
machine, for 1 6 j 6 s, where 1 6 s 6 n. Any permutation �r of the set of unscheduled jobs defines a complete
schedule r�r ¼ ðrð1Þ; . . . ; rðsÞ; �rð1Þ; . . . ; �rðn� sÞÞ. By placing any unscheduled job i in position (s + 1), we
produce a descendant node ri = (r(1), . . .,r(s), i). This paper employs the following additional notation:

x+ max {x, 0}, for any real number x

N {1, . . ., n}, the set of all jobs
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