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a b s t r a c t

Real-life planning problems are often complicated by the occurrence of disturbances, which imply that

the original plan cannot be followed anymore and some recovery action must be taken to cope with

the disturbance. In such a situation it is worthwhile to arm yourself against possible disturbances by

including recourse actions in your planning strategy. Well-known approaches to create plans that take

possible, common disturbances into account are robust optimization and stochastic programming. More

recently, another approach has been developed that combines the best of these two: recoverable robust-

ness. In this paper, we solve recoverable robust optimization problems by the technique of branch-and-

price. We consider two types of decomposition approaches: separate recovery and combined recovery.

We will show that with respect to the value of the LP-relaxation combined recovery dominates separate

recovery. We investigate our approach for two example problems: the size robust knapsack problem, in

which the knapsack size may get reduced, and the demand robust shortest path problem, in which the

sink is uncertain and the cost of edges may increase. For each problem, we present elaborate computa-

tional experiments. We think that our approach is very promising and can be generalized to many other

problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Most optimization algorithms rely on the assumption that all

input data are deterministic and known in advance. However, in

many practical optimization problems, such as planning in pub-

lic transportation or health care, data may be subject to changes.

To deal with this uncertainty, different approaches have been de-

veloped. In case of robust optimization (see Ben-Tal, Ghaoui, and

Nemirovski (2009); Bertsimas and Sim (2004)) we choose the so-

lution with minimum cost that remains feasible for a given set

of disturbances in the parameters. In case of stochastic program-

ming (Birge & Louveaux, 1997), we take first stage decisions on basis

of the current information and, after the true value of the uncer-

tain data has been revealed, we take the second stage or recourse

decisions. The objective here is to minimize the cost of the first

stage decisions plus the expected cost of the recourse decisions.

The recourse decision variables may be restricted to a polyhedron
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through the so-called technology matrix (Birge & Louveaux, 1997).

Summarized, robust optimization wants the initial solution to be

completely immune for a predefined set of disturbances, while

stochastic programming includes a lot of options to postpone deci-

sions to a later stage or change decisions in a later stage.

Recently, the notion of recoverable robustness (Liebchen,

Lübbecke, Möhring, & Stiller, 2009) has been developed, which

combines robust optimization and second-stage recovery options.

Recoverable robust optimization computes solutions, which for a

given set of scenarios can be recovered to a feasible solution ac-

cording to a set of pre-described, fast, and simple recovery algo-

rithms. The main difference between recoverable robustness and

stochastic programming is the way in which recourse actions are

limited. The property of recoverable robustness that recourse ac-

tions must be achieved by applying a simple algorithm instead of

being bounded by a polyhedron makes this approach very suitable

for combinatorial problems. As an example, consider the planning

of buses and drivers in a large city. We may expect that during

rush hours buses may be delayed, and hence may be too late to

perform the next trip in their schedule. In case of robust optimiza-

tion, we can counter this only by making the time between two

consecutive trips larger than the maximum delay that we want to
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take into account. This may lead to a very conservative schedule.

In case of recoverable robustness, we are allowed to change, if nec-

essary, the bus schedule, but this is limited by the choice of the

recovery algorithm. For example, we may schedule a given num-

ber of stand-by drivers and buses, which can take over the trip of

a delayed driver/bus combination. Especially in the area of railway

optimization recoverable robust optimization methods have gained

a lot of attention (see e.g. Caprara, Galli, Kroon, Maróti, and Toth

(2010); Cicerone et al. (2009)).

In this paper we present a Branch-and-Price approach for solv-

ing recoverable robust optimization problems. We present two

new types of solution approaches: Separate Recovery Decomposi-

tion (SRD) and Combined Recovery Decomposition (CRD). These ap-

proaches can be used to model many problems; we will test them

on the size robust knapsack problem and on the demand robust

shortest path problem.

This paper extends our conference paper (Bouman, van den

Akker, Hoogeveen, Demetrescu, & Halldorsson, 2011) by presenting

a general definition of our decomposition approaches, a proof that

the LP-relaxation of the CRD model dominates the LP-relaxation

of the SRD model, and a further study of the solution algorithm

for the demand robust shortest path problem. This study includes

different column generation strategies and elaborate computational

experiments.

To the best of our knowledge, Bouman et al. (2011) and this

paper are the first ones applying column generation to recover-

able robust optimization. Another decomposition approach, namely

Benders decomposition, is used by Cacchiani, Caprara, Galli, Kroon,

and Maróti (2008) to assess the Price of Recoverability for recover-

able robust rolling stock planning in railways.

The remainder of the paper is organized as follows. In Section 2,

we define the concept of recoverable robustness. In Section 3,

we present our two different decomposition approaches, and we

show the general result that the LP-relaxation of the CRD Model

is stronger than the LP-relaxation of the SRD model. In Section 4,

we consider the size robust knapsack problem. We investigate

the two decomposition approaches in a branch-and-price frame-

work and we present computational experiments in which we

compare different solution algorithms. Besides algorithms based

on Separate and Combined Recovery Decomposition, we test hill-

climbing, dynamic programming, and branch-and-bound. The ex-

periments indicate that Separate Recovery Decomposition performs

best. Section 5 is devoted to the demand robust shortest path

problem. Since Separate Recovery Decomposition does not seem to

be appropriate for this problem, we focus on Combined Recovery

Decomposition and consider the settings of the branch-and-price

algorithm in more detail. In our experiments we show that the col-

umn generation strategy has a significant influence on the compu-

tation time. Finally, Section 6 concludes the paper.

2. Recoverable robustness

In this section we formally define the concept of recoverable

robustness. We are given an optimization problem

P = min{ f (x)|x ∈ F},
where x ∈ R

n are the decision variables, f is the objective function,

and F is the set of feasible solutions.

Disturbances are modeled by a set of discrete scenarios S. We

use Fs to denote the set of feasible solutions for scenario s ∈ S, and

we denote the decision variables for scenarios s by ys. The set of

algorithms that can be used for recovery are denoted by A, where

A(x, s) ∈ A determines a feasible solution ys from a given initial so-

lution x in case of scenario s. In case of planning buses and drivers

a scenario corresponds to a set of bus trips that are delayed, and

the algorithms in A decide about the use of standby drivers.

The recovery robust optimization problem is now defined as:

RRPA = min{ f (x) + g({cs(ys)|s ∈ S})|x ∈ F, A ∈ A,

∀ s∈Sys = A(x, s)}.
Here, cs(ys) denotes the cost associated with the recovery vari-

ables ys, and g denotes the function to combine these cost into the

objective function. There are many possible choices for g. A few

examples are as follows:

1. g({cs(ys) = 0. This models the situation where our only con-

cern is the feasibility of the recovered solutions.

2. g({cs(ys) = maxs∈Scs(ys), that is, it models the maximal cost

of the recovered solutions ys. This corresponds to minimiz-

ing the worst-case cost. If cs(ys) measures the deviation of

the solution ys from x, we minimize the maximum devia-

tion from the initial solution. Note that this deviation may

also be limited by the recovery algorithms.

3. g({cs(ys) = ∑
s∈S pscs(ys), where ps denotes the probability

that scenarios s occurs. This corresponds to minimizing the

expected value of the solution after recovery.

In the remainder of the paper we will consider applications that

use either a function of sum or max type for g({cs(ys).

Although earlier papers on recoverable robustness (e.g.

Liebchen et al. (2009)) consider the latter type of definition

of g as two-stage stochastic programming, we think that the

requirement of a pre-described easy recovery algorithm makes

this definition fit into the framework of recoverable robustness.

3. Decomposition approaches

We discuss two decomposition approaches for recovery robust

optimization problems. In both cases we reformulate the problem

such that we have to select one solution for the initial problem

and one for each scenario. The difference consists of the way we

deal with the scenarios.

3.1. Separate Recovery Decomposition

In Separate Recovery Decomposition, we select an initial solution

and separately we select a solution for each scenario. This means

that for each feasible initial solution k ∈ F we have a decision vari-

able xk signaling if this solution is selected; similarly for each fea-

sible solution for each scenario q ∈ Fs we have a decision vari-

able ys
q. In the formulation we enforce that we select exactly one

initial solution and one solution for each scenario. The recovery

constraints enforces that for each scenario the initial solution can

be transformed into a feasible solution by the given recovery algo-

rithm. We assume that the recovery constraint and the objective

function can be expressed linearly. We now obtain an Integer Lin-

ear Programming formulation which is formulated as follows (for

maximization objective):

max
∑
k∈F

ckxk +
∑
s∈S

∑
q∈Fs

cs
qys

q

subject to∑
k∈F

xk = 1 (1)

∑
q∈Fs

ys
q = 1 for all s ∈ S (2)

A1x + As
2ys ≤ bs for all s ∈ S (3)

xk ∈ {0, 1} for all k ∈ F (4)
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