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a b s t r a c t

We introduce and analyze the Partitioning Min–Max Weighted Matching (PMMWM) Problem. PMMWM

combines the problem of partitioning a set of vertices of a bipartite graph into disjoint subsets of restricted

size and the strongly NP-hard Min–Max Weighted Matching (MMWM) Problem, that has recently been in-

troduced in the literature. In contrast to PMMWM, the latter problem assumes the partitioning to be given.

Applications arise in the field of intermodal container terminals and sea ports. We propose a MILP formu-

lation for PMMWM and prove that the problem is NP-hard in the strong sense. Two heuristic frameworks

are presented. Both of them outperform standard optimization software. Our extensive computational study

proves that the algorithms provide high quality solutions within reasonable time.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

In this paper we consider a variant of the strongly NP-hard Min–

Max Weighted Matching (MMWM) Problem, that has recently been

introduced by Barketau, Pesch, and Shafransky (2015). An instance

of MMWM is defined by an edge-weighted bipartite graph G(U, V, E)

with disjoint vertex sets U and V (bipartitions), edge set E, and a par-

titioning of U into disjoint subsets (components). Given a maximum

matching on G, the weight of a component is defined as the sum of

the weights of the edges of the matching that are incident to the ver-

tices of the component. The objective is to find a maximum matching

that minimizes the maximum weight of the components. The compo-

nents may, for example, correspond to areas of responsibility of man-

agers or tasks to be performed by a worker or machine. The objective

is to balance the workload, risk, etc. over these components.

While Barketau et al. (2015) assume the components to be fixed,

we relax this assumption by assuming the partitioning decision to

be part of the optimization, with only the desired number of compo-

nents being fixed. We refer to this problem as the Partitioning Min–

Max Weighted Matching (PMMWM) Problem. Fig. 1 illustrates an ex-

emplary solution to an example instance of PMMWM. The maximum

matching is represented by bold edges. Edge weights are solely de-

picted for the edges of the matching. Bipartition U = {u1, . . . , u7} has

been partitioned into the components U1, U2 and U3 with weights

6, 9 and 4, respectively. Hence, the corresponding objective function
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value of the PMMWM instance is max{6, 9, 4} = 9. If we move u4 to

U3 without changing the matching, the objective function value re-

duces by 1.

This paper is organized as follows. In Section 2 we provide a de-

tailed problem description along with a MILP model of the prob-

lem. We present two applications of PMMWM in the context of a

reach stacker based container terminal and a rail-road terminal. Next,

a proof of the problem’s strong NP-hardness is given in Section 3.

Section 4 introduces two heuristic frameworks that are being ana-

lyzed based on computational tests in Section 5. In Section 6, we sum-

marize the findings of this paper.

2. Detailed problem definition and applications

Let G(U, V, E) be a weighted bipartite graph with bipartitions U and

V and edge set E. The elements of U and V are indexed i = 1, . . . , n1

and j = 1, . . . , n2, respectively. Assume n1 ≤ n2. A weight c(e) = cuv ∈
Q+

0
is associated with each edge e = (u, v) ∈ E of G. Define a match-

ing as a set M⊆E of pairwise nonadjacent edges and a maximum

matching as a matching having the largest possible size |M| amongst

all matchings on G. Throughout the paper, we will assume that, for

any given bipartite graph, there exists a maximum matching � with

|�| = n1. As in Barketau et al. (2015), given a partitioning of U into

m disjoint subsets, U1,U2, . . . ,Um, the value of a maximum match-

ing � is defined to be w(�) := maxk∈{1,...,m}{∑u∈Uk,(u,v)∈� cuv} (refer

to Fig. 1 for an illustration). Then PMMWM can formally be defined

as follows: find a partitioning of the vertex set U into m (potentially

empty) disjoint subsets, U1,U2, . . . ,Um, with at most ū elements in

each subset, and a maximum matching � on G, such that the value
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Fig. 1. A solution to an example instance of PMMWM.

of � is minimum amongst all maximum matchings over all possible

partitionings of U.

We define the following binary variables:

xi j :=
{

1 if (i, j) ∈ �,

0 else,
∀ (i, j) ∈ E (1)

and

yik :=
{

1 if i ∈ Uk,

0 else,
∀ i ∈ U, k ∈ {1, . . . , m}. (2)

Then a nonlinear mathematical model for PMMWM is as follows:

min
x,y

max
k∈{1,...,m}

{∑
i∈U

∑
j∈V

ci jyikxi j

}
(3)

s.t.
∑
j∈V

xi j = 1 ∀ i ∈ U, (4)

∑
i∈U

xi j ≤ 1 ∀ j ∈ V, (5)

m∑
k=1

yik = 1 ∀ i ∈ U, (6)

∑
i∈U

yik ≤ ū ∀ k ∈ {1, . . . , m}, (7)

xi j ∈ {0, 1} ∀ (i, j) ∈ E, (8)

yik ∈ {0, 1} ∀ i ∈ U, k ∈ {1, . . . , m}. (9)

The objective function (3) minimizes the value of the maximum

matching over all possible partitionings and all maximum matchings.

Constraints (4)–(5) are well known maximum matching constraints

(recall that n1 ≤ n2). Constraints (6) enforce every vertex u ∈ U to be

an element of exactly one partition Uk, k ∈ 1, . . . , m. Constraints (7)

restrict the number of vertices in each partition to be at most ū. The

domains of the variables are defined by (8)–(9).

A specific application of PMMWM arises at small to medium sized

sea ports where containers are handled by reach stackers. The cor-

responding terminals, as schematically represented in Fig. 2, can in-

clude large long-term storage areas and additional temporary storage

areas (or marshaling-areas; see, for instance, Preston & Kozan, 2001;

Kozan & Preston, 1999). The latter areas aim at improving the perfor-

mance of the terminals by inducing short turnaround times of vessels

when distances to long-term storage areas are relatively large. When

a vessel arrives at a berth at the terminal, containers are unloaded by

quay cranes and then stored in a temporary storage area that is lo-

cated next to the berth. Containers that leave the terminal by ship are

moved to the temporary storage area using reach stackers during pre-

vious idle times. We will assume that these vehicles are “fast” if they

are unloaded and “slow” if they are loaded and can thus restrict our-

selves to considering the movements of loaded vehicles only. This is

a common assumption when considering container movements (see,

for instance, Boysen & Fliedner, 2010) and is supported by the fact,

that “reach stackers [in comparison to straddle carriers] are less sta-

ble in the forward direction as the machines will fall forward when

breaking in an emergency, particularly if the load is carried high for

visibility reasons” (Isoloader, 2012). Then an application of PMMWM

arises, when considering the process of emptying or refilling the

vessel

quay crane

reach stacker

temporary storage area

long-term storage area

Fig. 2. Potential schematic layout of a reach stacker based terminal.
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