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a b s t r a c t

Dispersion is a desirable element inherent in many location problems. For example, dispersive strategies are

used in the location of franchise stores, bank branches, defensive missile silo placement, halfway homes,

and correctional facilities, or where there is need to be dispersed as much as possible in order to minimize

impacts. Two classic models that capture the essence of dispersion between facilities involve: (1) locating

exactly p-facilities while maximizing the smallest distance of separation between any two of them, and (2)

maximizing the number of facilities that are being located subject to the condition that each facility is no

closer than r-distance to its closest neighboring facility. The latter of these two problems is called the anti-

covering problem, the subject of this paper. Virtually all past research has involved an attempt to solve for

the “best or maximal packing” solution to a given anti-covering problem. This paper deals with what one

may call the worst case solution of an anti-covering problem. That is, what is the smallest number of needed

facilities and their placement such that their placement thwarts or prevents any further facility placement

without violating the r-separation requirement? We call this the disruptive anti-covering location problem.

It is disruptive in the sense that such a solution would efficiently prevent an optimal packing from occurring.

We present an integer linear program model for this new location problem, provide example problems which

indicate that very disruptive configurations exist, and discuss the generation of a range of stable levels to this

problem.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The anti-covering (or r-separation) location problem (ACLP) in-

volves maximizing the number of selected sites, such that no two se-

lected sites are within a specified distance or time standard of each

other. This problem can be defined on a bounded continuous region

or a discrete set of sites (Carrizosa & Tóth, 2015). When defined on

a bounded continuous domain it is generally assumed that all facili-

ties must be located within the region and be at least r-distance from

the boundary and at least r-distance from each other. Although both

problem domains are of interest, this paper is concerned with the

ACLP defined upon a discrete set of sites. The solution to the ACLP is

sometimes referred to as a packed arrangement. There may be many

configurations to a problem instance in which all located facilities

are at least the prescribed r-distance apart from each other. Those ar-

rangements which involve the maximum number of located facilities

are optimal ACLP solutions. Those solutions that use fewer than the

maximum possible number of located facilities fall into two classes:

∗ Corresponding author: Tel.: +1 805 456 2832; fax: +1 805 893 2578.

E-mail addresses: mniblett@geog.ucsb.edu, mattniblett@gmail.com (M.R. Niblett),

church@geog.ucsb.edu (R.L. Church).

(1) at least one unused site exists where it is possible to locate an

additional facility while still maintaining all r-separation constraints;

and, (2) all remaining unused sites are too close to an existing facility

or boundary so that no further facilities can be added to the solution

without violating the r-separation constraints. This paper deals with

this second class of solution.

A logical question to ask is: what is the smallest number of facil-

ities that can be deployed and placed such that no remaining sites

can be used without violating one or more r-separation constraints?

The basic idea is to find the smallest configuration that blocks to the

greatest extent possible a maximal packing. We call this the Disrup-

tive Anti-Covering Location Problem (DACLP). The objective of this

paper is to develop a model to identify facility patterns that prohibit

maximally packed configurations from being possible. This model can

be useful in a number of possible applications. For example, the anti-

cover location problem has been used by Grubesic and Murray (2008)

to test possible policies on sex offender residential location. They

used the ACLP to identify how many sex offenders could take up resi-

dence in a city when each offender had to live at least a given distance

apart from all other sex offenders as well as from all public places

where children are likely to be present (e.g. parks, day care facilities,

and schools). A solution to the ACLP has been used to assess the im-

pact of this proposed public policy for a given separation standard,
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but only under the assumption that a maximal packing will be possi-

ble and achievable. But, it is entirely possible that as sex offenders

sequentially choose residential locations in some ad-hoc fashion,

while ensuring that they keep away from other offenders and pub-

lic spaces where children are present, the resulting pattern will be

less than what could be maximally packed. In fact, some “choice”

residential locations may effectively thwart a maximal packing and

considerably reduce possible numbers of who could be accommo-

dated in such a residential placement policy. Another example in-

volves the use of the ACLP to test the impact of possible privatization

of liquor sales associated with potential store placement under sepa-

ration standards (Grubesic et al., 2012). Such an application helps to

define the largest number of stores that could be placed. However,

this approach ignores the fact that this situation may involve com-

petitors, and each market entrant would most likely choose one or

more location(s) which might preempt rivals from being able to lo-

cate in a close, packed-in arrangement when there are imposed sep-

aration requirements.

Therefore, attention should be directed towards what configu-

rations disrupt maximal packing the most? The importance of this

problem is both theoretical and practical. From either perspective,

optimal solutions to the DACLP define a lower bound on the number

of facilities that can be placed without violating the r-separation

constraints as well as pre-empt any additional facilities from being

feasibly added. This is an important consideration, particularly in

problems where a lower-bound arrangement might occur, like in

habitat nest/den site modeling, feasible residence locations for sex-

offenders, franchise store location choice, or any other application

for which the ACLP has been used or proposed. The main objective

of this paper is to present a model for the DACLP, discuss possible

solution techniques, and present several example solutions. The

next two sections provide a brief background of the ACLP and a

description of past approaches in formulating the ACLP as a binary

integer programming problem. This is followed by a formulation

for the disruptive anti-covering location problem. We also develop

a model which can be used to identify “stable” configurations for

different levels of potential facility deployment. Computational

examples for both models are presented along with a discussion on

potential avenues for modeling disruption within this new construct.

2. Background

Dispersion has been an objective of considerable interest in the

field of location science. General forms of this problem have also been

described for broader cutting and packing type problems (Wang,

Huang, Zhang, & Xu, 2002; Wäscher, Haußner, & Schumann, 2007).

Disbursing resources such that they are equitably distributed has also

been a problem of recent interest (see Batta, Lejeune, & Prasad, 2014;

Prokopyev, Konk, & Martinez-Torres, 2009). There are four basic forms

of dispersion modeling used in location science. The first involves the

dispersal of facilities from population centers (see Church & Cohon,

1976; Church & Garfinkel, 1978). A second form of dispersion involves

the dispersal of facilities from each other (see Moon and Chaudhry

(1984), and extended work by Erkut (1990) and Current and

Storbeck (1994)). A third form of dispersion, which is a hybrid of the

first two forms, involves keeping facilities away from each other as

well as away from centers of population (Berman & Huang, 2008). Lei

and Church (2013) have shown that these previous modeling forms

may be represented in a unified model, and Lei and Church (2015)

presents an efficient formulation and exact algorithm solution strat-

egy. The fourth form is based upon a standard of minimum separa-

tion. Moon and Chaudhry (1984) were the first to focus on the use of

a minimum separation standard. They proposed to locate as many fa-

cilities as possible while keeping them at least r-distance apart from

each other. They called this the anti-covering location problem and is

the principal subject of this paper. It has also been referred to as the

r-separation problem (Erkut, ReVelle, & Ülküsal, 1996) and the pack-

ing problem (Stephenson, 2005; Wang et al., 2002).

In addition to the examples given above in analyzing policies as-

sociated with sex-offender residence locations and liquor store out-

lets, Downs, Gates, and Murray (2008) used the anti-cover problem

to analyze the carrying capacity of a population of Sandhill cranes,

Williams (2008) employed a separation distance in the selection of

biological reserve sites, Church (2013) has used it in estimating the

size and extent of core habitat, and Murray and Church (1996) de-

scribe a form of anti-covering for a forest harvest selection prob-

lem. Problems that use a similar model structure as the ACLP have

been defined for dashboard layout (Castillo, Kampas, & Pinter, 2008),

placing cutting patterns on fabric (Wong & Leung, 2009), map la-

bel placement (Ribeiro & Lorena, 2008a), DNA sequencing (Joseph,

Meidanis, & Tiwari, 1992), and the location of undesirable facilities

(Berman & Huang, 2008; Murray & Church, 1999). A number of tech-

niques have been used to solve the anti-cover problem and related

problems including: greedy (Chaudhry, McCormick, & Moon, 1986),

bee colony optimization (Dimitrijević, Teodorović, Simićc, & Šelmicć,

2012), Lagrangian relaxation (Murray & Church, 1997b), genetic al-

gorithms (Chaudhry, 2006; Wei & Murray, 2014), column generation

(Ribeiro & Lorena, 2008b), and greedy randomized adaptive search

(Cravo, Ribeiro, & Lorena, 2008). Many other similar heuristic ap-

proaches have been developed for problems related to the ACLP such

as: the container loading problem (Pisinger, 2002), two and three

dimensional bin-packing problems (Bischoff, 2006; Lodi, Martello,

& Vigo, 1999; 2002), packing cylinders into a rectangular container

(Birgin, Martínez, & Ronconi, 2005), packing of unequal sized circles

within a larger circle (Wang et al., 2002), and genetic algorithms for

the two-dimensional strip packing problem using rectangular pieces

(Bortfeldt, 2006).

Most of the applications of the anti-covering problem entail the

use of an integer-linear programming model. Prospective sites are

identified in advance as “discrete” locations, representing centers of

raster cells (Church, 2013), commercial parcels (Murray & Kim, 2008;

Grubesic et al., 2012), or nodes of a network. Murray and Church

(1997a) have shown that the discrete anti-cover problem is an equiv-

alent problem to the vertex packing problem on a network or the

maximal independent set problem on a graph, and therefore is NP

hard. There can be possible uncertainty in potential site positions,

and Wei and Murray (2012) have analyzed the impacts of site un-

certainty within the context of the anti-cover problem.

Optimal solutions to the anti-covering problem represent the

largest number of facilities that can be simultaneously located while

keeping each of them at least a minimum distance, r, from each

other. Unfortunately, there can be circumstances in which a maxi-

mum packing is disrupted; that is, not optimally packed. They may

be disrupted by earlier residential choices, already established crane

nests and territories, or by poor site choices in already located fran-

chisee establishments. Whether maximal packing arrangements are

disrupted by accident, happenstance or by intent, such disruption and

the potential impact of disruption should be of interest when using

this type of model. In the next section we describe the two basic ways

in which the anti-covering problem has been formulated as an integer

programming problem. Following this we present a brief discussion

on packing solutions and a model which seeks to maximally disrupt

potential solutions to the anti-covering problem.

3. Formulating the anti-covering location problem (ACLP)

The disruptive anti-cover location problem is, in essence, a deriva-

tive of the anti-cover location problem (ACLP) as any solution to the

disruptive case, by definition, must meet the conditions of anti-cover:

that is, all facilities are located at least r-distance apart from each

other. In this section we provide details in formulating the anti-cover

location problem and in the next section we show how an anti-cover



Download English Version:

https://daneshyari.com/en/article/477961

Download Persian Version:

https://daneshyari.com/article/477961

Daneshyari.com

https://daneshyari.com/en/article/477961
https://daneshyari.com/article/477961
https://daneshyari.com

