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a b s t r a c t

We propose a new speed and departure time optimization algorithm for the pollution-routing problem (PRP),

which runs in quadratic time and returns an optimal schedule. This algorithm is embedded into an iterated

local search-based metaheuristic to achieve a combined speed, scheduling and routing optimization. The

start of the working day is set as a decision variable for individual routes, thus enabling a better assignment

of human resources to required demands. Some routes that were evaluated as unprofitable can now appear

as viable candidates later in the day, leading to a larger search space and further opportunities of distance

optimization via better service consolidation. Extensive computational experiments on available PRP bench-

mark instances demonstrate the good performance of the algorithm. The flexible departure times from the

depot contribute to reduce the operational costs by 8.36% on the considered instances.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The pollution-routing problem (PRP) is a variant of the vehi-

cle routing problem with environmental considerations, introduced

in Bektaş and Laporte (2011), and aiming to minimize operational

and environmental costs subject to vehicle capacity and hard time-

window constraints. The costs are based on driver wages and fuel

consumption, evaluated as a non-linear function of the distance

traveled, vehicle load, and vehicle speed. Some recent articles have

proposed heuristics for the PRP: an adaptive large neighborhood

search in Demir, Bektaş and Laporte (2012), and an ILS with a set-

partitioning matheuristic in Kramer, Subramanian, Vidal and Cabral

(2015). Other contributions (Bektaş & Laporte, 2011; Franceschetti,

Honhon, Van Woensel, Bektaş & Laporte, 2013; Dabia, Demir & Van

Woensel, 2014) focused on mathematical formulations and integer

programming algorithms based on branch-and-price.

Vehicle-speed decisions play an important role in the PRP, since

they do not only affect the total cost, but also the travel times be-

tween the locations, with a large impact on time-window feasibil-

ity. For this reason, most algorithms for the PRP perform – at regular

times during the search – an optimization of vehicle speeds for the
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current routes. The resulting speed optimization subproblem (SOP),

seeks to find the most cost-efficient arc speeds on a given route while

respecting arrival-time constraints at each customer.

Some algorithms for the SOP have been recently proposed (Demir

et al., 2012; Kramer et al., 2015; Norstad, Fagerholt & Laporte, 2011;

Hvattum, Norstad, Fagerholt & Laporte, 2013). These algorithms run

in quadratic time, consider identical cost/speed functions for each

arc, and assume that the departure time is fixed. Now, considering

that the start of the working day (the departure time from the de-

pot) is a decision variable leads to different optimality conditions and

speed decisions. This may open the way to significant cost reduc-

tions, but also increases resolution complexity. Fewer articles have

addressed this aspect. In Dabia et al. (2014), the departure time from

the first customer is optimized by means of a golden section search,

within a pricing algorithm. Franceschetti et al. (2013) model and solve

the PRP with time-dependent travel times, a generalization of the

problem considered in this paper. The resulting speed optimization

algorithm is, however, more complex due to the presence of three

time intervals with different speed/cost functions, involving 24 rules

for speed choices. The solution is also not guaranteed to be optimal.

Finally, Vidal, Jaillet and Maculan (2014) showed that the optimal SOP

solution with deadlines and arc-dependent speed/cost functions can

be achieved by solving a hierarchy of resource allocation problems.

This article contributes to the resolution of difficult vehicle

routing variants with speed and departure time optimization. We
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consider the case where driver wages are computed from the de-

parture time, hence allowing to better assign human resources to

needed deliveries. Note that a fixed departure time can still be

obtained by reducing the departure time window to a point. Some

routes that were evaluated as unprofitable with a fixed departure

time policy can now appear as viable candidates, leading to a larger

search space and further opportunities of routing optimization via

better service clustering.

We introduce a simple quadratic time algorithm for the speed and

departure time optimization (Section 3). Moreover, we demonstrate

the optimality of this algorithm (Section 4). The speed optimization

algorithm is embedded into a vehicle routing matheuristic to pro-

duce high-quality routing plans. We conduct computational experi-

ments on the classic PRP instances to evaluate the performance of the

method, and assess the impact of departure time optimization on cost

and pollution emissions (Section 5). The results highlight very signif-

icant routing cost reduction, of 8.36% on average. The CPU time of the

new metaheuristic remains comparable to current state-of-the-art

methods despite the fact that it deals with a more general problem.

2. Problem description

The PRP with flexible departure times can be defined as fol-

lows. Let G = (V,A) be a complete and directed graph with a set

V = {0, 1, 2, . . . , n} of vertices and a set A = {(i, j) : i, j ∈ V, i �= j}
of arcs. Vertex 0 represents the depot while the remaining vertices

are customers. A set of m vehicles with capacity Q is available to

service the customers. Each customer i has a non-negative demand

qi, a time window [ai, bi] during which service must start, and a

service time τ i. By convention, q0 = τ0 = 0 for the depot. Each arc

(i, j) ∈ A represents a travel possibility from node i to j for a distance

dij, which can be traveled with any speed vij in the interval [vmin,

vmax]. The PRP aims at determining a speed matrix (v)ij for the arcs

and a set of feasible routes R to serve all customers while minimizing

environmental and operational costs.

Let σ = (σ1, σ2, . . . , σ|σ |) be a route, fσiσi+1
be the vehicle load

on arc (σi, σi+1) and tσi
be the arrival time at customer σ i. The

environmental cost is proportional to fuel consumption, computed

as in Eq. (1) where w1, w2, w3, w4 are parameters based on fuel

properties, vehicle and network characteristics. The labor costs are

proportional to route duration, computed as the difference between

departure and arrival time tσ|σ | − tσ1
. Defining ωfc as the fuel cost

per liter and ωdc as the driving cost per second, the objective of the

PRP is given in Eq. (2):

F f

σiσi+1
(vσiσi+1

) = dσiσi+1

(
w1

vσiσi+1

+ w2 + w3 fσiσi+1
+ w4v2

σiσi+1

)
(1)

Zprp(R, v) =
∑
σ∈R

(
ωfc

|σ |−1∑
i=1

F f

σiσi+1
(vσiσi+1

) + ωfd (tσ|σ | − tσ1
)

)
. (2)

3. The proposed speed and departure time optimization

algorithm

This section deals with the optimization of speeds and departure

times for a fixed route σ . To simplify the exposition, we will omit σ in

the notations, and thus assume that customers are indexed by their

order of appearance in the route.

The fuel consumption per distance unit F f

i,i+1
(vi,i+1) is a convex

function. The speed value v∗
f

that minimizes fuel costs is given in

Eq. (3). Similarly, for any arc (i, i + 1), assuming that there is no wait-

ing time in the route after i, the speed value v∗
fd

that minimizes fuel

plus driver costs is expressed in Eq. (4):

dF f

i,i+1

dvi,i+1

(v∗
f
) = 0 ⇔ v∗

f
=

(
w1

2w4

)1/3

(3)

v∗
fd

=
( ωdc

ωfc

+ w1

2w4

)1/3

. (4)

For a fixed route, the speed and departure time optimization problem

consists of finding the departure time from the depot and the optimal

speeds for each arc while respecting customers’ time windows. To

solve this problem, we propose an optimal recursive algorithm that

extends those presented in Demir et al. (2012); Hvattum et al. (2013)

and Kramer et al. (2015). It solves in quadratic time a special case of

the time-dependent SOP of Franceschetti et al. (2013).

The algorithm relies on a general divide-and-conquer strategy,

which iteratively solves a relaxed SOP obtained by ignoring time win-

dows at intermediate destinations. If the resulting solution satisfies

all constraints, then it is returned. Otherwise the customer p with

maximum time-window violation is identified and its arrival time is

set to its closest feasible value. Fixing this decision variable creates

two sub-problems which are recursively solved (Algorithm 1, lines

Algorithm 1 Speed and departure-time optimization algorithm (SD-

TOA).

1: Procedure SDTOA(s, e)

2: p ← violation ← maxViolation ← 0

3: D ← ∑e−1
i=s di,i+1

4: T ← ∑e−1
i=s τi

5: if s = 1 and e = nσ then

6: t1 = a1

7: if e = nσ then

8: te = min{max{ae, ts + D/v∗
fd

+ T}, be}
9: if s = 1 then

10: ts = min{max{as, te − D/v∗
fd

− T}, bs}
11: vref ← D/(te − ts − T)

12: for i = s + 1 . . . e do

13: ti = ti−1 + τi−1 + di−1,i/vref

14: violation = max{0, ti − bi, ai − ti}
15: if violation > maxViolation then

16: maxViolation = violation

17: p = i

18: if maxViolation > 0 then

19: tp = min{max{ap, tp}, bp}
20: SDTOA(s, p)

21: SDTOA(p, e)

22: if s = 1 and e = nσ then

23: for i = 2 . . . nσ do

24: vi−1,i=max{di−1,i/(ti−ti−1−τi−1)), v∗
f
}

20–21). The novelty of this algorithm is the way it manages depar-

ture or arrival-time fixing within subproblems to converge towards

optimal departure and speed decisions.

For a route with nσ nodes (including the departure and return to

the depot), Algorithm 1 is applied by setting the start s to 1 and the

end e to nσ . The departure time is first set to the earliest possible value

t1 = a1 (Algorithm 1, line 6). This decision will be revised later on.

The arrival times at each customers are then derived as follows. The

arrival time at the last customer when traveling at speed v∗
fd

is deter-

mined and, in case of violation, updated to its closest time-window

bound (Algorithm 1, line 8). This leads to a reference speed vref on

the route (Algorithm 1, line 11) which is used to compute the arrival

time at each customer as well as the maximum time-window viola-

tion (Algorithm 1, lines 12–17).

In case of violation, two subproblems are recursively solved. Any

subproblem starting at the depot is now solved without fixing the

departure time. Indeed, the arrival time to the last customer of this

sub-problem is already fixed, such that it is possible to evaluate the

reference speed “backwards”, deriving the best departure time at the

depot (Algorithm 1, line 10), and the customer arrival times. The other

sub-problems are similarly solved. The recursion is repeated until all

constraints are satisfied. Finally, when arrival times are known for all

customers, the associated speeds are revised in such a way that any



Download English Version:

https://daneshyari.com/en/article/477963

Download Persian Version:

https://daneshyari.com/article/477963

Daneshyari.com

https://daneshyari.com/en/article/477963
https://daneshyari.com/article/477963
https://daneshyari.com

