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a b s t r a c t

Patriksson (2008) provided a then up-to-date survey on the continuous, separable, differentiable and convex

resource allocation problem with a single resource constraint. Since the publication of that paper the interest

in the problem has grown: several new applications have arisen where the problem at hand constitutes a

subproblem, and several new algorithms have been developed for its efficient solution. This paper therefore

serves three purposes. First, it provides an up-to-date extension of the survey of the literature of the field,

complementing the survey in Patriksson (2008) with more then 20 books and articles. Second, it contributes

improvements of some of these algorithms, in particular with an improvement of the pegging (that is,

variable fixing) process in the relaxation algorithm, and an improved means to evaluate subsolutions. Third,

it numerically evaluates several relaxation (primal) and breakpoint (dual) algorithms, incorporating a variety

of pegging strategies, as well as a quasi-Newton method. Our conclusion is that our modification of the

relaxation algorithm performs the best. At least for problem sizes up to 30 million variables the practical time

complexity for the breakpoint and relaxation algorithms is linear.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the continuous, separable, differentiable and convex

resource allocation problem with a single resource constraint. The

problem is formulated as follows: Let J := {1, 2, . . . , n}. Let φj : R → R
and gj : R → R, j ∈ J, be convex and continuously differentiable. More-

over, let b ∈ R and −∞ < lj < uj < ∞, j ∈ J. Consider the problem to

minimize
x

φ(x) :=
∑
j∈J

φj(xj), (1a)

subject to g(x) :=
∑
j∈J

gj(xj) ≤ b, (1b)

lj ≤ xj ≤ uj, j ∈ J. (1c)

We also consider the problem where the inequality constraint (1b)

is replaced by an equality, i.e.,

minimize
x

φ(x) :=
∑
j∈J

φj(xj), (2a)

subject to g(x) :=
∑
j∈J

ajxj = b, (2b)
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lj ≤ xj ≤ uj, j ∈ J, (2c)

where aj �= 0, j ∈ J, and the sign is the same for all j ∈ J. Further, we

assume that there exists an optimal solution to problems (1) and (2).

For brevity, in the following discussions we define Xj := [lj, uj], j ∈ J.

Problems (1) and (2) arise in many areas, e.g., in search theory

(Koopman, 1999), economics (Markowitz, 1952), stratified sampling

(Bretthauer, Ross, & Shetty, 1999), inventory systems (Maloney &

Klein, 1993), and queuing manufacturing networks (Bitran & Tirupati,

1989). Further, these problems occur as subproblems in algorithms

that solve the integer resource allocation problem (Mjelde, 1983,

Section 4.7; Ibaraki & Katoh, 1988, pp. 72–75; Bretthauer & Shetty,

2002b), multicommodity network flows (Shor, 1985, Section 4.2), and

several others. Moreover, problems (1) and (2) can be used as sub-

problems when solving resource allocation problems with more than

one resource constraint (Federgruen & Zipkin, 1983; Mjelde, 1983),

and to solve extensions of problems (1) and (2) to a nonseparable

objective function φ (Dahiya, Suneja, & Verma, 2007; Mjelde, 1983).

The books Mjelde (1983), Ibaraki and Katoh (1988), and Luss (2012)

describe several extensions, such as to minmax/maxmin objectives,

multiple time periods, substitutable resources, network constraints,

and integer decision variables.

Many numerical studies of the problems (1) and (2) have been per-

formed; for example, see Bitran and Hax (1981), Nielsen and Zenios

(1992), Robinson, Jiang, and Lemke (1992), Kodialam and Luss (1998),

http://dx.doi.org/10.1016/j.ejor.2015.01.029
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Kiwiel (2007), Kiwiel (2008a), and Kiwiel (2008b). Our numerical

study is however timely and well motivated, since except for those by

Kiwiel (2007, 2008a, 2008b), where the quadratic knapsack problem

is studied, none of the earlier approaches study large-scale versions

of problem (1) or (2). There are also several algorithms (e.g., Nielsen

& Zenios, 1992, Section 1.4; Stefanov, 2001) which are claimed to be

promising, but have not been evaluated in a large-scale study. Only

one earlier study (Kodialam & Luss, 1998) evaluates the performance

of algorithms for the problems (1) and (2) with respect to variations

in the portions of the variables whose values are at a lower or upper

bound at the optimal solution (see Section 6.2), and this is done for

modest size instances (n = 104) only. Further, no study has been done

on the computational complexity for non-quadratic versions of the

problems (1) or (2). Our numerical study also incorporates improve-

ments of the relaxation algorithm, as presented in Sections 4.3.4 and

4.3.5, and utilizes performance profiles (Dolan & Moré, 2002).

As a final note on the compuational tests, we only consider prob-

lem instances where the dual variable corresponding to the resource

constraint (1b), respectively (2b), can be found in closed form; oth-

erwise, we would need to implement a numerical method in some of

the steps, e.g., a Newton method. We consider only customized algo-

rithms for the problem at hand, since we presume that they perform

better than more general algorithms under the above assumption.

Patriksson (2008) presents a survey of the history and applica-

tions of problems (1) and (2). Since its publication several related

articles have been published; the survey of Patriksson (2008) is there-

fore complemented in Section 2. Section 3 presents a framework of

breakpoint algorithms, resulting in three concrete representatives.

Section 4 presents a framework of relaxation algorithms, and ulti-

mately six concrete example methods. In Section 5 we describe a

quasi-Newton method, due to Nielsen and Zenios (1992), for solving

the problem (2). Section 6 describes the numerical study. A test prob-

lem set is specified and the performance profile used for the evalua-

tion is defined. In Section 7, we analyze the results from the numerical

study. The structure is such that we first compare the relaxation al-

gorithms, second the pegging process, and third the best performing

algorithms among these two with the quasi-Newton method. Finally,

we draw overall conclusions.

2. Extension of the survey in Patriksson (2008)

We here extend the survey in Patriksson (2008), using the same

taxonomy, and sorted according to publication date.

Mjelde (1983) K. M. Mjelde, Methods of the allocation of limited re-

sources, Section 4.7

(Problem) φj ∈ C2; linear equality (aj = 1); lj = 0.

(Methodology) The ranking algorithm of Luss and Gupta (1975).

(Citations) Applications in capital budgeting (Hansmann, 1968;

Shih, 1977), cost-effectiveness problems (Kirsch,

1968; Mjelde, 1978; Pack, 1970), health care (Fetter,

1973), marketing (Luss & Gupta, 1975), multiobjec-

tive optimization (Geoffrion, 1967), portfolio selec-

tion (Jucker & de Faro, 1975), production (the internal

report leading to Bitran & Hax, 1979), reliability

(Bodin, 1969), route-planning for ships or aircraft

(Dantzig, Blattner, & Rao, 1966), search (Charnes &

Cooper, 1958), ship loading (Kydland, 1969), and

weapons selection (Danskin, 1967).

(Notes) A monograph on resource allocation problems con-

taining a comprehensive overview of the resource

allocation problem, including extensions to several

resources, non-convex or non-differentiable objec-

tives, integral decision variables, fractional program-

ming formulations, etc.

Shor (1985) N. Z. Shor, Minimization Methods for Nondifferentiable

Functions, Section 4.2

(Problem) φj(xj) = 1
2 (xj − yj)

2; linear equality (aj = 1); lj = 0.

(Methodology) Pegging.

(Citations) Shor and Ivanova (1969), in which the motivating lin-

ear programming application is described.

(Notes) The problem arises within the framework of a right-

hand side allocation algorithm for a large-scale linear

program.

Hua and Zhang (2005) Z.-S. Hua and B. Zhang, Direct algorithm for

separable continuous convex quadratic knapsack problem (in Chinese)

(Problem) φj(xj) = qj

2 x2
j

− rjxj; linear inequality (aj > 0); lj = 0.

(Methodology) Pegging.

(Citations) Algorithms for the problem (Bretthauer & Shetty,

2002a, 2002b; Melman & Rabinowitz, 2000; Parda-

los & Kovoor, 1990) as well as for the case of integer

variables.

(Notes) A numerical illustration (n = 6).

Dai and Fletcher (2006) Y.-H. Dai and R. Fletcher, New algorithms

for singly linearly constrained quadratic programs subject to lower and

upper bounds.

(Problem) φj(xj) = qj

2 x2
j

− rjxj, qj > 0; gj convex in C2 with

g′(xj) > 0.

(Methodology) A combination of a bracketing algorithm on the La-

grangian dual derivative, and a secant algorithm for

the Lagrangian dual problem.

(Citations) Algorithms for the problem (Brucker, 1984; Calamai

& Moré, 1987; Helgason, Kennington, & Lall, 1980;

Pardalos & Kovoor, 1990).

(Notes) The problem arises as a subproblem in a gradient pro-

jection method for a general quadratic programming

problem over a scaled simplex.

Li and Sun (2006) D. Li and X. Sun, Nonlinear integer programming,

Chapter 6: Nonlinear Knapsack Problems, Section 6.1: Continuous–

Relaxation-based Branch–and–Bound Methods.

(Problem) φj and gj increasing; gj convex in C2 with g′
j
> 0.

(Methodology) Multiplier search.

(Citations) Multiplier search methods (Bretthauer & Shetty,

1995), pegging methods (Bretthauer & Shetty, 2002a,

2002b).

(Notes) The problem arises as a subproblem in branch–and–

bound methods for the integer programming version

of the problem, such as for the quadratic knapsack

problem, stratified sampling, manufacturing capacity

planning, linearly constrained redundancy optimiza-

tion in reliability networks, and linear cost minimiza-

tion in reliability networks.

Dahiya et al. (2007) K. Dahiya, S. K. Suneja and V. Verma, Convex

programming with a single separable constraint and bounded variables.

(Problem) φj(xj) = qj

2 x2
j

− rjxj, qj > 0; gj convex in C2 with g′(xj) >

0; studies also the special case of a linear equality.

(Methodology) Iterative descent process using strictly convex

quadratic separable approximations of a nonsepara-

ble original objective f ∈ C2; subproblems solved us-

ing the pegging algorithm of Stefanov (2001).

(Citations) General references on convex programming over box

constraints; Helgason et al. (1980), Dussault, Fer-

land, and Lemaire (1986), and Pardalos and Kovoor

(1990) for example algorithms for separable convex

programming.
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