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This article presents a practicable algorithm for globally solving sum of linear ratios problem (SLR). The

algorithm works by globally solving a bilinear programming problem (EQ) that is equivalent to the problem

(SLR). In the algorithm, by utilizing convex envelope and concave envelope of bilinear function, the initial

nonconvex programming problem is reduced to a sequence of linear relaxation programming problems. In

order to improve the computational efficiency of the algorithm, a new accelerating technique is introduced,

which provides a theoretical possibility to delete a large part of the investigated region in which there exists

no global optimal solution of the (EQ). By combining this innovative technique with branch and bound

operations, a global optimization algorithm is designed for solving the problem (SLR). Finally, numerical

experimental results show the feasibility and efficiency of the proposed algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The sum of linear ratios problems have broad applications in

management science, system engineering, optimization designing,

transportation planning, finance and investment, bond portfolio opti-

mization, cluster analysis, engineering optimization, geometric appli-

cation, computer vision, biodiversity conservation, data envelopment

analysis, and so on, see Almogy and Levin (1970), Bajalinov (2003),

Cploantoni, Manes, and Whinston (1969), Schaible (1996), Konno and

Watanabe (1996), Drezner, Schaible, and Simchi-Levi (1990), Schaible

(1981), Stancu-Minasian (1997), Rao (1971), Schaible and Shi (2003),

Billionnet (2013), Du, Cook, Liang, and Zhu (2014), Jeyakumar, Li, and

Srisatkunarajah (2013), Kao (2014), Lim and Zhu (2013) and Yang, Li,

Chen, and Liang (2014), and whose mathematical modelling can be

stated as follows:

(SLR) :

⎧⎪⎨
⎪⎩

max f (x) =
p∑

i=1

δi
ϕi(x)

ψi(x)

s. t. x ∈ D � {x ∈ Rn|Ax ≤ b, x ≥ 0},
where D is a nonempty bounded set, the numerator ϕi(x) and the

denominator ψi(x) are all affine functions defined on Rn with as-

sumption that ψi(x) �= 0 for any x ∈ D, δi, i = 1, 2, . . . , p, are all ar-

bitrary real numbers. Since ψi(x) is a continuous function defined

on D, from the intermediate value theory, this implies ψi(x) < 0 or
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ψi(x) > 0 for all x ∈ D. If ψi(x) < 0, we can replace
ϕi(x)
ψi(x)

with
−ϕi(x)
−ψi(x)

,

the problem remains essentially unchanged, so that we can always

assume that ψi(x) > 0 for all x ∈ D. Moreover, as the set of solutions

is bounded, in fact, if there exists some x ∈ D such that ϕi(x) < 0, we

can replace
ϕi(x)
ψi(x)

with
[ϕi(x)+Mψi(x)]

ψi(x)
, where M is a constant so large

that [ϕi(x)+ Mψi(x)] ≥ 0 for any x ∈ D, the problem still remains es-

sentially unchanged. Therefore, we can also assume that ϕi(x) ≥ 0. In

all, without loss of generality, in the following, we can always assume

that ϕi(x) ≥ 0 and ψi(x) > 0, i = 1, 2, . . . , p, for all x ∈ D. Naturally that

some numerical problems can arise as a denominator vanishes, i.e.,

if there exists some ratio
ϕi(x)
ψi(x)

, which degrades into an affine func-

tion ϕi(x), for this case, the affine function ϕi(x) can be regarded as a

ratio whose denominator is a constant 1, that is to say, ϕi(x) can be

looked as
ϕi(x)

1 , the problem can still be solved by using the algorithm

proposed in this paper.

In last decades, various solution approaches have been proposed

for globally solving the special form of the sum of linear ratios prob-

lem (SLR). For instance, parametric simplex method (Konno, Yajima,

& Matsui, 1991), outer approximation method (Benson, 2010), im-

age space method (Falk & Palocsay, 1994), unified monotonic ap-

proach (Phuong & Tuy, 2003), interior point algorithm (Nesterov &

Nemirovskii, 1995), heuristic method (Konno & Abe, 1999), simplicial

branch and bound duality-bounds algorithm (Benson, 2007), con-

cave minimization method (Benson, 2004a), branch and cut tech-

nique (Costa, 2010), branch and bound algorithms (Bazaraa, Sherali,

& Shetty, 2006; Jiao, 2009; Jiao & Chen, 2008; Konno & Fukaishi, 2000;

Kuno, 2002, 2005; Lin, 2008; Shen & Wang, 2008; Shi, 2011; Wang &

Shen, 2008; Wang, Shen, & Liang, 2005), and so on. Although many
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algorithms can be used to solve special form of sum of linear ratios

problem, as far as we know, only Shen and Wang (2006) present a

branch and bound algorithm for maximizing the sum of linear ra-

tios with coefficients. In addition, several algorithms (Benson, 2002a,

2002b; Dai, Shi, & Wang, 2005; Fang, Gao, Sheu, & Xing, 2009; Gao,

Mishra, & Shi, 2012; Jaberipour & Khorram, 2010; Jiao, Wang, & Chen,

2013; Pei & Zhu, 2013; Shen & Jin, 2010; Shen, Duan, & Pei, 2009;

Wang & Zhang, 2004) have been developed for globally solving sum

of nonlinear ratios problems.

In this paper, we will present a branch and bound algorithm for

globally solving the sum of linear ratios problem (SLR) by utilizing

new accelerating technique. The main features of our algorithm are

given as follows. (1) We consider general sum of linear ratios prob-

lem, the investigated mathematical modeling in this article is more

general than other one considered. (2) The algorithm works by glob-

ally solving a bilinear programming problem (EQ) that is equivalent

to the problem (SLR). By utilizing convex envelope and concave en-

velope of bilinear function, the equivalent problem (EQ) is reduced to

a sequence of linear relaxation programming problems. (3) In order

to improve the computational efficiency of the proposed algorithm, a

new accelerating technique based on outer space is raised, it offers a

possibility to cut away a large part of the investigated region where

there does not exist the global optimal solution of the problem (EQ),

and which can be looked as an accelerating installation for global

optimization of the problem (SLR). (4) The proposed algorithm econ-

omizes the required computations by conducting the branch-and-

bound search in Rp rather than in Rn or R2p, where p is the number

of ratios in the objective function of the problem (SLR) and n is the

number of decision variables in the (SLR). (5) The proposed algorithm

is convergent to the global optimal solution through the successive

refinement partition of the outer space region and solving a sequence

of linear relaxation programming problems (LRP). Finally, numerical

results show that our algorithm can be used to effectively solve the

sum of linear ratios problem (SLR).

The organization of this paper is as follows. The equivalent prob-

lem (EQ) of the (SLR) and its linear relaxation programming (LRP)

which is established by utilizing convex envelope and concave enve-

lope of bilinear function are given in Section 2. Section 3 presents and

validates an innovative algorithm by combining branch and bound

operations with accelerating technique. In Section 4, several test ex-

amples in recent literatures and several randomly generated problem

of various dimensions are used to verify the feasibility and efficiency

of our algorithm, and numerical results are given. Finally, some con-

cluding remarks are given in Section 5.

2. Linear relaxation programming

In order to globally solve the sum of linear ratios problem (SLR),

first we transform the problem (SLR) into an equivalent nonconvex

programs problem (EQ). In the following, our main computation is to

globally solve the equivalent problem (EQ).

2.1. Equivalent problem

Without loss of generality, we assume that

δi > 0, i = 1, 2, . . . , T; δi < 0, i = T + 1, T + 2, . . . , p;

l0i = min
x∈D

ϕi(x), u0
i = max

x∈D
ϕi(x), i = 1, 2, . . . , p;

L0
i = 1

maxx∈D ψi(x)
, U0

i = 1

minx∈D ψi(x)
, i = 1, 2, . . . , p.

Since ϕi(x)and ψi(x)are all affine functions over the set D, the value of

l0
i
, u0

i
, L0

i
and U0

i
can be easily obtained by solving linear programming

problems. Obviously, for each i = 1, 2, . . . , p, we have 0 ≤ l0
i

≤ u0
i
, 0 <

L0
i

≤ U0
i
.

Define

�0 = {(t, s) ∈ R2p | l0i ≤ ti ≤ u0
i , L0

i ≤ si ≤ U0
i , i = 1, 2, . . . , p},

and consider the following equivalent nonconvex programs problem:

(EQ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max g(t, s) =
T∑

i=1

δitisi +
p∑

i=T+1

δitisi

s.t. ϕi(x)− ti ≥ 0, i = 1, 2, . . . , T,

ϕi(x)− ti ≤ 0, i = T + 1, T + 2, . . . , p,

siψi(x) ≤ 1, i = 1, 2, . . . , T,

siψi(x) ≥ 1, i = T + 1, T + 2, . . . , p,

x ∈ D, (t, s) ∈ �0.

The key equivalent theorem for the problems (SLR) and (EQ) is

given as follows.

Theorem 1. If (x∗, t∗, s∗) is a global optimum solution of the problem

(EQ), then we can get that t∗
i

= ϕi(x
∗), s∗

i
= 1/ψi(x

∗), i = 1, 2, . . . , p, and

x∗ is a global optimum solution of the problem (SLR). On the contrary, if

x∗ is a global optimum solution of the problem (SLR), define t∗
i

= ϕi(x
∗)

and s∗
i

= 1/ψi(x
∗) (i = 1, 2, . . . , p), then (x∗, t∗, s∗) is a global optimum

solution of the problem (EQ).

Proof. The proof can be easily followed by the monotonicity of the

function, therefore it is omitted here.

By Theorem 1, we can follow that, for solving the problem (SLR),
we may globally solve its equivalent problem (EQ) instead. Besides, it

is easy to understand that the problems (SLR) and (EQ) have the same

global optimal value.

2.2. Linear relaxation programming

In this subsection, we will establish the linear relaxation program-

ming of the problem (EQ), which can offer the upper bound of the

global optimal value for the (EQ) in the proposed branch and bound

algorithm. By utilizing special structure of objective function and con-

straint functions for the (EQ), the proposed method for yielding this

linear relaxation programming problem depends on overestimating

or underestimating the objective function and constraint functions of

the (EQ). By Horst and Tuy (1993), McCormick (1976), Tuy (1998) and

Benson (2004b), we can propose an approach for generating this lin-

ear overestimating function of the objective function for the problem

(EQ), which is given by the following Theorem 2.

Theorem 2. Consider the rectangle LR = {(t, s) ∈ R2 | l ≤ t ≤ u, L ≤ s ≤
U}, where l, u, L and U are all non-negative constants satisfying 0 ≤ l ≤
u, 0 < L ≤ U. For any (t, s) ∈ LR, define the functions g(t, s), gLR(t, s)and

gLR(t, s) as follows:

g(t, s) = ts,

gLR(t, s) = min{Ut + ls − lU, Lt + us − uL},
gLR(t, s) = max{Lt + ls − lL, Ut + us − uU}.

Then, the following conclusions hold:

(i) For any (t, s) ∈ LR, g(t, s), gLR(t, s) and gLR(t, s) satisfy

gLR(t, s) ≤ g(t, s) ≤ gLR(t, s).

(ii) Let �t = u − l,�s = U − L, then

lim
�s→0

gLR(t, s) = lim
�s→0

g(t, s) = lim
�s→0

gLR(t, s).

(iii) Let LR = {(t, s) ∈ R2 | l ≤ t ≤ u, s = b}, then we have

gLR(t, s) = g(t, s) = gLR(t, s).
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