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a b s t r a c t

This paper approaches a pickup and delivery problem with multiple vehicles in which LIFO conditions are

imposed when performing loading and unloading operations and the route durations cannot exceed a given

limit. We propose two mixed integer formulations of this problem and a heuristic procedure that uses tabu

search in a multi-start framework. The first formulation is a compact one, that is, the number of variables and

constraints is polynomial in the number of requests, while the second one contains an exponential number of

constraints and is used as the basis of a branch-and-cut algorithm. The performances of the proposed solution

methods are evaluated through an extensive computational study using instances of different types that were

created by adapting existing benchmark instances. The proposed exact methods are able to optimally solve

instances with up to 60 nodes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Vehicle routing problems play a very important role in logistics

and transportation and have been widely studied during the last

decades. Many variants with different characteristics have been con-

sidered and a variety of mathematical and computational techniques

have been proposed to solve them (see, for example, Toth & Vigo,

2002 and Golden, Raghavan, & Wasil, 2008 for a survey on vehicle

routing problems). The Capacitated Vehicle Routing Problem (CVRP)

is the reference model for these problems and is defined as follows:

given a set of customers, each one demanding a certain amount of a

product, and a fleet of vehicles with limited capacity that are based

at a given depot, the problem consists of finding a set of minimum

cost routes for the vehicles so that all customers are visited exactly

once, their demands are fulfilled and the capacity of the vehicles is

not exceeded.

The problem approached in this paper is a variant of the so called

Vehicle Routing Problem with Pickups and Deliveries (VRPPD) in

which the vehicles have to satisfy a set of customer requests where

each request specifies the size of the load to be transported, the origin

location and the destination location. According to the classification

proposed by Berbeglia, Cordeau, Gribkovskaia, and Laporte (2007)
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this problem belongs to the one-to-one class of pickup and delivery

problems.

Note that the CVRP can be considered as a particular case of the

VRPPD where all the requests have the depot as the origin location.

The VRPPD has been extensively studied in the last three decades (see

Berbeglia et al., 2007 and Parragh, Doerner, & Hartl, 2008a, 2008b),

incorporating additional constraints that appear in practical situa-

tions. In this paper we consider a LIFO (Last-In-First-Out) rule of ser-

vice, that means only the last pickup customer request that has been

loaded can be delivered. Hence, the vehicle servicing an origin loca-

tion must continue to the corresponding destination or visit another

origin location. This condition arises naturally when the vehicles used

for transportation are rear-loaded and they have a single access point

to their container. The rearrangement of the load when performing

deliveries may be possible, but if it is too time consuming, it could

be simply forbidden. This is the case, for example, of hazardous ma-

terials or very heavy or fragile items. Moreover, we also require that

the total duration of each route does not exceed a given limit, where

route duration includes traveling times among different locations and

service times at each origin/destination for loading and unloading op-

erations. The objective is to find a set of routes with minimum total

duration satisfying all the constraints. We refer to this problem as the

Multiple Vehicle Pickup and Delivery Problem with LIFO constraints

and Maximum Time but it will be abbreviated simply by PDPLT.

To our knowledge, the PDPLT has not been previously studied.

However, algorithms have been proposed for related problems. If the

capacity and maximum time constraints are relaxed the resulting

problem is known as the Traveling Salesman Problem with Pickup,
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Delivery and LIFO constraints (TSPPDL). Carrabs, Cerulli, and Cordeau

(2007) develop a branch-and-bound algorithm for this problem and

later Cordeau, Iori, Laporte, and Salazar (2010) propose a branch-and-

cut algorithm which is able to solve instances with up to 25 requests

within a reasonable computing time.

Battarra, Erdogan, Laporte, and Vigo (2010) consider a version

of the TSPPDL in which the LIFO rule can be violated, but in this

case rehandling costs are incurred. They present models and exact

algorithms based on branch-and-cut for this problem, while Erdogan,

Battarra, Laporte, and Vigo (2012) have later developed a tabu search

metaheuristic.

Cheang, Gao, Lim, Qin, and Zhu (2012) propose several heuristics

for a multi-vehicle case where the route length of each vehicle cannot

exceed a predetermined limit and the vehicles have unlimited capac-

ity (see also Gao, Lim, Qin, & Zhu, 2011). This problem is called Mul-

tiple Pickup and Delivery Traveling Salesman Problem with LIFO and

Distance constraints (MTSPPD-LD). Their primary objective is mini-

mizing the number of vehicles used, while the secondary objective is

minimizing the total distance traveled. Note that the MTSPPD-LD can

be solved as a PDPLT, since minimizing the total distance is equiv-

alent to minimizing the total time, and minimizing the number of

vehicles as the primary objective can be achieved by simply adding a

big number to the travel times of the arcs leaving the depot.

Another variant that is closely related to the PDPLT was introduced

recently by Cherkesly, Desaulniers, and Laporte (2014). In that paper,

in addition to imposing LIFO constraints, time windows are associated

to every pickup and delivery location. However, they do not consider

a maximum time duration for the routes. The authors develop three

related branch-price-and-cut algorithms using a three-index formu-

lation of the problem. Their exact solution procedures involve column

generation techniques and constrained shortest path subproblems.

The main purpose of this paper is to propose, for the first time,

methods to solve the PDPLT. We have developed two mixed integer

formulations of the PDPLT and a heuristic procedure that uses tabu

search in a multi-start framework. The first formulation is a compact

one, that is, the number of variables and constraints grows polynomi-

ally with the number of requests, while the second one contains an

exponential number of constraints. Separation procedures for several

families of the constraints of the non-compact formulation are imple-

mented and embedded in a branch-and-cut algorithm. The compact

formulation is easy to use because all the constraints can be included

at once, but it is outperformed by the proposed branch-and-cut based

on the non-compact formulation for larger instances. The proposed

methods are able to solve medium size instances of the PDPLT and

provide tight lower and upper bounds for larger instances.

The remainder of the paper is organized as follows. Section 2 intro-

duces the main notation that will be used through the paper. Section 3

presents the compact formulation and Section 4 is devoted to the

non-compact formulation, separation algorithms for several families

of valid inequalities and the associated branch-and-cut algorithm.

Section 5 describes a fast tabu search heuristic for the PDPLT which is

embedded into a multi-start framework. The performance of the pro-

posed solution methods is evaluated and analyzed in Section 6, where

an extensive computational study is presented. Finally, Section 7 con-

cludes with some final remarks and ideas for future research.

2. Problem notation

The PDPLT is defined on a directed graph G = (V, A).

• V = P ∪ D ∪ {0} is the set of nodes, where P = {1, . . . , n} is the set of

pickup locations, D = {n + 1, . . . , 2n} is the set of delivery locations

and 0 is the depot. We assume that the delivery location of the load

picked up at i ∈ P is i + n ∈ D.
• A is the set of arcs (i, j) between every pair of nodes i, j ∈ V , i �= j.

• The travel time to traverse each arc (i, j) is denoted by cij, for

all (i, j) ∈ A. It is assumed that travel times satisfy the triangular

inequality. Travel times will also be called costs throughout the

paper.
• The service time (pickup or delivery) at each node i ∈ P ∪ D is si.

• The maximum duration of the route of any vehicle is T.

• For each i ∈ P, di > 0 is the load of the item that must be picked

up at i and delivered at i + n. We define, for each i + n ∈ D, di+n =
−di < 0.

• The number of available vehicles is denoted by m and their capacity

by Q .

The goal of the PDPLT is to find a set of routes with minimum total

duration that services all the requests, that is, each requested item

must be picked up at its origin and delivered at its destination. The

duration of the routes include the traversing times among locations

and service times and cannot exceed T. The routes must start and end

at the depot, the capacity cannot be exceeded, and the LIFO rule must

be respected.

3. A compact formulation

In this section we propose a compact formulation for our problem

using three families of variables. Binary variables xij indicate if arc (i, j)
is traversed by any vehicle, or not. Continuous variables αij are typical

flow-like variables that in our case indicate the arrival time at node j

when the vehicle travels from i to j. Binary variables uik, defined for any

pair of nodes i ∈ V and k ∈ P, are equal to 1 if the item corresponding

to node k is in the vehicle when it leaves node i. These variables are

used to prevent subtours, to express the capacity constraints and to

assure that the pickup and the delivery nodes associated to a given

request belong to the same route. This last condition is not easy to

impose because variables xij do not allow to identify which vehicle is

traveling from i to j.

Variables uik and their corresponding constraints are inspired by

the Miller–Tucker–Zemlin formulation for the Travelling Salesman

Problem (see Miller, Tucker, & Zemlin, 1960) that were improved

later and used for the Vehicle Routing Problem by Kara, Laporte, and

Bektas (2004). Let us define coefficients βik as follows: βkk = 1 and

βk+n,k = −1 for all k ∈ P, and βik = 0 for any i ∈ V, i �= k, n + k. Note

that coefficients βik indicate that item k can only be picked up in node

k (βkk = 1) and delivered in node k + n (βk+n,k = −1). For instance, if

n = 3, it is

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

−1 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

Proposition 1. Constraints (1) are valid for the PDPLT.

uik − ujk + xij + (1 − βik − βjk)xji ≤ 1 − βjk ∀(i, j) ∈ A, k ∈ P (1)

Proof. Let us first prove the validity of constraints (2).

uik − ujk + xij ≤ 1 − βjk ∀(i, j) ∈ A, k ∈ P (2)

Note that the definition of variables uik implies that ukk = 1 and

un+k,k = 0 for all k ∈ P. If xij = 0, then the possible values of uik − ujk

are −1, 0, 1 and, since the RHS is always greater than or equal to

zero, we only have to analyze the case where ujk = 0 and uik = 1, but

then βjk �= 1 and the constraint holds. If xij = 1, then uik − ujk ≤ −βjk.

If uik = 1, then either ujk = 1 and βjk = 0 or ujk = 0 and βjk = −1

(j = k + n). The case where xij = 1 and uik = 0 is proved similarly.

These constraints can be improved by introducing an extra term, in

a similar way as in Kara et al. (2004) : uik − ujk + xij + γjixji ≤ 1 − βjk.

It can be observed that the largest value that can be given to γji is

(1 − βik − βjk) ≥ 0.
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