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a b s t r a c t

In this article we survey mathematical programming approaches to problems in the field of drinking water

distribution network optimization. Among the predominant topics treated in the literature, we focus on

two different, but related problem classes. One can be described by the notion of network design, while the

other is more aptly termed by network operation. The basic underlying model in both cases is a nonlinear

network flow model, and we give an overview on the more specific modeling aspects in each case. The overall

mathematical model is a Mixed Integer Nonlinear Program having a common structure with respect to how

water dynamics in pipes are described. Finally, we survey the algorithmic approaches to solve the proposed

problems and we discuss computation on various types of water networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In classic network flow problems the task is to route a flow through

a network from a set of sources to a set of sinks. This point of view can

become coarse when dealing with pressurized water networks, where

the fluid is transported in pipes with no air contact and thus possi-

bly varying pressure levels. A first step toward accurately modeling

the physical aspects of such networks, is the introduction of pressure

variables at nodes in addition to flow variables on arcs. In this mod-

eling enhancement, what actually induces a flow between two nodes

is explained by a pressure difference. To subsume a broader field of

applications, the additional variables in such approaches are also re-

ferred to as node potentials, including as well the electric potential of

a point in an electric circuit. Pressure again is an important quantity in

gas networks. In drinking water distribution network optimization,

such a modeling approach has experienced eminent interest in or-

der to develop physically sound models for real-world applications.

The drawback of the resulting accuracy gain is the fact that the rela-

tion between flow and potential difference usually leads to nonlinear

equations. Together with discrete decisions that can be made regard-

ing different network elements, this puts the optimization tasks faced

here in the context of Mixed Integer Nonlinear Programming (MINLP).

In the following we focus on surveying topics related to the opti-

mization of drinking water distribution networks. We will drop the
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attributes drinking and distribution and for this text establish the

convention that the term water networks subsumes anything that

is named by drinking water distribution networks, water supply sys-

tems, or combinations of the two. Other types of water networks, such

as waste water networks (Rauch & Harremoës, 1999) or water usage

and treatment networks in chemical plants (Huang, Chang & Ling,

1999) are not considered here. Moreover, we point out that besides

design and operation there are other topics related to the optimization

of water networks, for example the containment detection problem

(Lorenz, Laird, Biegler & Van Bloemen Waanders, 2006) or topics re-

lated to water quality management (Rossman & Boulos, 1996), which

are not covered here. The term network underlines the fact that we

deal with applications in which the underlying structure can be mod-

eled by a graph in a mathematical sense. Out of the different stages

into which water network optimization can be subdivided, we focus

on the somewhat different tasks of optimal design of water networks on

the one hand and optimal operation of water networks on the other. On

both sides, one assumes to have an underlying network with a fixed

topology, i.e., a fixed set of nodes and arcs representing sources, sinks,

pipes, pumps, valves, and tanks. The former of the two optimization

tasks, i.e., the design problem, usually disregards pumps, valves and

tanks. One then seeks to choose for each pipe in the network a di-

ameter among a discrete set of commercially available diameters in a

cost-minimal way, while maintaining the satisfiability of all costumer

demands located at sinks. The diameter has an important impact not

only on the pipe’s capacity, but also on the pressure distribution in the

network. The operation problem instead typically assumes fixed pipe

diameters but allows for the modeling of pumps, valves, and tanks.

The task is then to operate pumps and valves, which again affect flow
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and pressure distribution, over a certain time horizon in order to sat-

isfy the customer demands, while minimizing the operational costs

mainly arising from power consumption of pumps. In its full-scale

form, the operation problem hence incorporates the aspect of time

into the model and is thus a dynamic problem. Conversely, in order to

model the design problem, no time parameter is neither needed nor

generally used in the literature, which is why we consider it a static

problem.

The fact that active elements (pumps, valves, and tanks) are disre-

garded in design problems, and that there are only passive elements

(pipes), is prevalent in the literature, although this does not necessar-

ily have to be so. However, unifying design and operational phases in

a single model bears some difficulties, and we will address this issue

shortly in Section 5.3.

In spite of these differences, there are still some obvious simi-

larities from a mathematical point of view, due to the way water

dynamics in a pipe is described. Typically, the majority of the arcs in

a network is constituted by pipes, and the equation associated with a

pipe will be at the heart of the present survey. As mentioned earlier,

the problems we consider here belong to the class of MINLPs and,

in their general form, they involve two sources of non-convexity to

model the flow of water into pipes (depending on the pressure dif-

ference at the nodes) and to deal with discrete choices. Thus, both

water network design and operation are NP-hard problems, and in

the present paper we are interested in mathematical programming

approaches, i.e., methods that explicitly use a mathematical program-

ming model. Those methods exploit (different variants of) different

algorithmic paradigms to solve MINLPs, including Mixed Integer Lin-

ear Programming (MILP) techniques. We try to provide an overview

of how different techniques succeed in different situations.

In the last decade, MINLP approaches have experienced increas-

ing popularity, whereas before that, optimization problems related to

water networks were prevalently attacked by (meta-)heuristic meth-

ods, see, e.g., da Conceição Cunha and Ribeiro (2004) and De Corte and

Sörensen (2012), without explicitly using a mathematical program-

ming formulation. In the following, we do not dwell on the variety of

those heuristic approaches that exist in the field. For a broader dis-

cussion of topics related to water networks that covers also aspects

that are not of algorithmic nature, we refer the reader to Coelho and

Andrade-Campos (2014). Finally, it is worth mentioning the existence

of Partial Differential Equation (PDE) approaches in the field of water

network optimization, see, e.g. Laird, Biegler and Van Bloemen Waan-

ders (2007), reflecting the fluid-dynamic nature of the topic. Again,

this is outside the scope of the present survey.

2. Modeling

To begin with, we present the main modeling aspects found in

the literature concerning the design and the operation problems. Re-

garding the various network elements, different variants at different

levels of detail can be found. The most detailed modeling descrip-

tion of the relevant aspects is provided in Burgschweiger, Gnädig and

Steinbach (2009b). A network is naturally represented by a directed

graph G = (N ,A), where nodes stand for sources and sinks and arcs

stand for pipes, pumps, and valves. Tanks are usually modeled as

nodes, but this is not always true, see, e.g., Morsi, Geißler and Martin

(2012).

2.1. Flow and pressure

A main difference between the design and the operation prob-

lems is of course the contrast between the static and the dynamic

setting. In the latter, in principle all variables and parameters can be

made continuous-time dependent on t ∈ [0, T], where [0, T] ⊂ R is

the considered time horizon. However, to get a tractable optimiza-

tion model, time is usually discretized and the quantities depend on

the discrete time period n ∈ {1, . . . , N} of length τ ∈ {τ1, . . . , τN}. A

typical planning horizon is one day, divided in 24 hourly periods. In

Burgschweiger, Gnädig and Steinbach (2009b) it is pointed out that

the discretization has another practical motivation. Namely, demand

forecasts and electricity price tariffs are usually given for discrete and

not continuous time. In the following we will highlight the time de-

pendency of variables or parameters with a superscript n only when

different periods are involved in an equation or constraint. Otherwise,

the equation usually has to be imposed in every time period. In a static

setting there is of course no time dependency to be highlighted. In

any case, we introduce a flow variable qa on each arc a ∈ A. By allow-

ing the flow to take negative values, a directed graph accounts for its

both possible directions: a positive flow qa on an arc a = (i, j) means

that it goes from i to j, while a negative value of qa stands for a flow

of amount |qa| from j to i. It is as well possible to allow only positive

flow values and account for the directions with a binary variable.

From classical network flow problems one inherits the flow con-

servation constraints. For a node i ∈ N with demand di, which for the

moment is assumed to be a constant, and the set of incoming and

outgoing arcs, δ−
i

and δ+
i

, respectively, one has the linear constraint∑
a∈δ−

i

qa −
∑
a∈δ+

i

qa = di. (1)

Sinks have a positive demand, which means that water actually leaves

the network at those nodes. At sources, often called reservoirs in the

water context, constraint (1) is usually not imposed. Otherwise, one

can model di as a variable that can assume only non-positive values,

possibly bounded from below. Of course, there can be nodes with

zero demands. Sometimes all nodes with positive or zero demand are

called junctions. In real-world applications, there is usually uncer-

tainty in the data, for example in the demand di. This aspect has been

addressed in (meta)heuristic approaches, see, e.g., Babayan, Kapelan,

Savic and Walters (2005). However, in the Mathematical Program-

ming literature, which is focus of the present paper, it has been very

rarely taken into account. Thus, in this survey we consider approaches

that assume deterministic data for the demands, which is, in any case,

quite reasonable because generally one wants to establish a network

design or operation that is feasible also in worst-case scenarios.

Next, one introduces the node potential variables hi, i ∈ N , rep-

resenting the hydraulic head of the water at a node. This variable

represents the pressure: In fluid dynamics, total head is the total

energy per unit weight of fluid and is the sum of potential energy

(elevation), pressure energy due to the pressure exerted on its con-

tainer (pressure) and kinetic energy (velocity head). Consistent with

this definition, total head and pressure are expressed dimensionally

as a length. Due to the small value of velocity head in relation to the

other two terms of the sum, the velocity head is generally neglected

and the total head is assimilated to the hydraulic head, given by the

sum of elevation and pressure.

A set of constraints that is regularly found in diverse optimization

approaches arises from the fact that the two groups of variables in-

troduced above are typically bounded. The absolute value of the flow

is bounded from above due to the capacity of the arcs. For example,

taking into account the maximum flow velocity that is allowed in a

pipe a, vmax
a , the flow bound can be written (Bragalli, D’Ambrosio, Lee,

Lodi & Toth, 2012) as

−π

4
vmax

a D2
a ≤ qa ≤ π

4
vmax

a D2
a, (2)

where Da is the diameter of pipe a. The node potentials have to stay

between certain bounds in order to guarantee minimum and maxi-

mum pressure levels at the nodes. Usually, the node potentials are

fixed at source nodes, reflecting the fact that at sources water is not

pressurized, but it exploits a fixed geographical height. We will see in

Section 6 that the bounds on the potential values often constitute the

physical bottleneck in a water network.
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