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a b s t r a c t

We propose an allocation rule that takes into account the importance of both players and their links and

characterize it for a fixed network. Our characterization is along the lines of the characterization of the

Position value for Network games by van den Nouweland and Slikker (2012). The allocation rule so defined

admits multilateral interactions among the players through their links which distinguishes it from the other

existing rules. Next, we extend our allocation rule to flexible networks à la Jackson (2005).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of networks under the game theoretic framework re-

volves around two basic problems: how a network is formed and how

to allocate the value it generates among its members. In this paper

we propose a new allocation rule that takes into account the impor-

tance of players as well as their links. Since a network describes the

interaction structure between agents, a key feature of our allocation

rule is that it covers both bilateral and multilateral interactions. We

provide an axiomatic characterization of this rule and compare it to

other allocation rules in the literature.

The notion of a “Network game” under the cooperative frame-

work was introduced by Jackson and Wolinsky (1996). This itself is

an extension of the “Communication situation” concept introduced

by Myerson (1977). In a subsequent paper Jackson (2005) extended

a solution concept for Communication situations to Network games:

the Myerson value and called it “the equal bargaining rule”. Borm,

Owen, and Tijs (1992), Slikker and van den Nouweland (2001), Slikker

(2005, 2007), Haeringer (2006), Kamijo (2009), Kamijo and Kongo

(2009), Ghintran (2013), van den Nouweland and Slikker (2012) etc.,

extended and characterized another solution concept for Communi-

cation situations and Network games: the Position value. Recently

the kappa value is defined by Belau (2013) as a more generalized ver-

sion of the position value for Communication situations that accounts

for various potential alternatives to the actual network in place.
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Related works by Bergantiños, Gómez-Rúa, Llorca, Pulido, and

Sánchez-Soriano (2014) and Rosenthal (2013) study the division of

cost of a network among the agents.

Jackson (2005) introduced the notion of flexible networks. The

underlying idea is that the network observed at a point in time need

not be fixed, and could ultimately evolve into a better subnetwork

if such a network exists. He showed that the equal bargaining rule

for Network games possesses certain limitations. In fact similar argu-

ments can also be constructed for some of the characterizations of the

Position value for Network games. Jackson proposed another set of

allocation rules for flexible networks among which, the Player Based

Flexible Network allocation rule (PBFN) and the Link Based Flexible

Network allocation rules (LBFN) are quite appealing. While flexible

network allocation rules have many advantages, they may not always

be feasible.1

The Position value is a standard link based rule where players get

less importance than the links they make. The equal bargaining rule

on the other hand emphasizes more on players. Both these values are

Shapley type in the sense that they aggregate the marginal contribu-

tions of the players over links and coalitions stemming from the given

network respectively. The Position value aggregates the marginal con-

tributions of the links and then divide this value into equal halves be-

tween the two players forming the links. The cumulative value arising

from the links of a player is her final payoff. This shows the importance

of the roles links play here. On the other hand the equal bargaining

rule aggregates the marginal contributions of the players involved in

1 For instance there might be situations where a priori assessment of the values of

alternative networks is not possible due to the need for costly hardware installations.
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each coalition restricted to the network. Thus the contribution of a

player in this setup is measured by her joining or leaving the network

with all her links. Therefore these two values are two extreme cases

of interactions of a player with her peers. However, it is useful to have

an allocation rule that accounts for both players and their links in a

manner that incorporates the simultaneous multilateral interactions

in a network. By multilateral interactions, we mean the interactions

that take place among individuals through some (possibly more than

one) of their links simultaneously in the network. For example, con-

sider players 1, 2, and 3 of a particular football team who complement

each other on the field. Suppose these players are linked to each other

(and the rest of the team) by means of their passing game which ul-

timately leads to goals being scored. Since player 1 is involved in two

links with 2 and 3 respectively and complementarities exist across

players, this player’s contribution to the team will change depending

on whether we consider the removal of those links separately or the

removal of both the links together. Thus, measuring the marginal con-

tributions of one of those players cannot be done independently from

the others and the effect of the multilateral interaction needs to be

considered.

In this paper, we develop such an allocation rule for fixed net-

work games and extend it to flexible networks. First we provide an

axiomatic characterizations of our rule using standard Shapley like

axioms viz., linearity, null player axiom, anonymity, monotonicity and

efficiency suitable for the standard revenue or cost allocation prob-

lems. We then show that this is satisfied only for a small set of net-

works.

On the other hand, cooperative game theory also had a long tra-

dition of offering inefficient solution concepts. There are many sit-

uations like creating a public good or winning a voting situation

where an allocation is not just to divide the winnings but to describe

how the players can affect the outcome of the game through their

interactions.2 In Owen (1975), a modification of the Banzhaf value

is defined for communication situations. This was characterized in

Alonso-Meijide and Fiestras-Janeiro (2006) using the properties of

component total power and fairness. Inefficient allocation rules are

likely to describe the prospects of playing different roles in a game

rather than describing fair division (see Dubey, Neyman, & Weber,

1981). In networks, when players have multilateral interactions with

their peers, they have different roles to play in each such interaction.

Thus for an allocation rule that measures the prospects of playing

those roles (interacting with players at different levels) axioms like

efficiency can be replaced by weaker axioms. Keeping this in mind,

next we replace the axiom of efficiency by a new axiom, called the

axiom of multilateral interaction and obtain an alternative characteri-

zation.

We show that our allocation rule can provide a better measure of

a player’s prospects in the network and determines the total power

(viz., power to initiate an action or power to prevent an action) of

a player in the network due to her multilateral interactions. Here

power of a player is measured by her prospects in playing different

roles. These roles are interactions among players at different levels.

In either case (with or without efficiency), we obtain a Shapley like

allocation rule which finds the weighted average of the marginal con-

tributions of players taking into account every possible combination

of their links. Hence while the player based approaches account for

contributions of all links of a player and the link based approaches for

those of one link of each player, our rule accounts for everything in

between.

2 This idea is similar to most of the semi-values for cooperative games (e.g., the

minimum norm solutions, Kultti & Salonen, 2007; least square values, Ruiz, Valenciano,

& Zarzuelo, 1996, 1998; Banzhaf value, Banzhaf, 1965 for simple games and their

extensions to general cooperative games i.e., TU games by Owen, 1975; Dragan, 1996;

Marichal & Mathonet, 2011 etc.) and may be thought of as describing the power of

players.

In the literature, excepting van den Nouweland and Slikker (2012),

both the equal bargaining rule and Position value for Network games

are characterized by the rather strong axiom of component balance.

It requires that when the Network game does not allow spill-over

across components (alternatively: the game is component additive),

the value generated by any component should be allocated to its

constituent players. We do not require component balancedness for

our characterizations.

The paper proceeds as follows. Section 2 provides the necessary

mathematical preliminaries, includes a brief description of the ex-

isting allocation rules and their characterization results. Section 3

develops our notion of an interactive allocation rule and its char-

acterization. In Section 4 we provide numerical solutions to the

motivating examples. Section 5 concludes. Major proofs and the ad-

ditional details about Example 1 can be found in Appendix A.

2. Preliminaries

In this section, we present the definitions and results required for

development of our model.

Let N = {1, . . . , n} be a fixed set of players who are connected

in some network relationship. A network consists of a finite set of

elements called nodes corresponding to players and a finite set of

pairs of nodes called links which correspond to bilateral relationships

between players. The network g is thus a list of unordered pairs of

players {i, j}, where {i, j} ∈ g indicates that i and j are linked in the

network g. For simplicity, we write ij to represent the link {i, j}. The

degree of a player in a network is the number of direct links she has

in the network. Let gN be the set of all subsets of N of size 2. We

call gN the complete network with n nodes. Then G = {g|g ⊆ gN} de-

notes the set of all possible networks or graphs on N. Special types

of networks that are important for us are k-regular networks (net-

work where every node has the same degree k) and the star networks

(networks in which n − 1 peripheral players are connected through

one central player). The network obtained by adding another net-

work g′ to an existing network g is denoted by g + g′ and the net-

work obtained by deleting subnetwork g′ from an existing network

g is denoted by g − g′. For g ∈ G, l(g) denotes the total number of

links. By m ∈ g we mean that m is a subnetwork of g (m ⊆ g) with

length l(m) = 1. A path in a network is a sequence of nodes such that

from each of its nodes there is a link to the next node in the se-

quence. Let N(g) be the set of players who have at least one link in g.

That is,

N(g) = {i | ∃j such that ij ∈ g}
Let n(g) = #N(g) be the number of players involved in g. Let Li(g) be

the set of links that player i is involved in, so that

Li(g) = {ij | ∃ j : ij ∈ g},
We denote by li(g) the number of links in player i’s link set. It

follows that l(g) = 1
2

∑
i

li(g). Given any S ⊆ N, let gS be the set of all

subsets of S of size 2, i.e., the complete network formed by the players

in S. Let g|S denote the subnetwork of g formed by the players in S.

Formally we have,

g|S = {ij | ij ∈ g and i ∈ S, j ∈ S}.
Definition 1. A component of a network g, is a non-empty subnet-

work g′ ⊂ g, such that

(a) if i ∈ N(g′) and j ∈ N(g′) where j �= i, then there is a path in g′

between i and j, and

(b) if i ∈ N(g′) and ij ∈ g, then ij ∈ g′.

Essentially, components of a network are the distinct connected

subgraphs in it. The set of components of g is denoted by C(g).
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