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a b s t r a c t

The problem of dynamic portfolio choice with transaction costs is often addressed by constructing a Markov

Chain approximation of the continuous time price processes. Using this approximation, we present an efficient

numerical method to determine optimal portfolio strategies under time- and state-dependent drift and

proportional transaction costs. This scenario arises when investors have behavioral biases or the actual drift

is unknown and needs to be estimated. Our numerical method solves dynamic optimal portfolio problems

with an exponential utility function for time-horizons of up to 40 years. It is applied to measure the value of

information and the loss from transaction costs using the indifference principle.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Numerical methods for dynamic portfolio optimization under pro-

portional transaction costs typically assume that the drift of the risky

asset is constant. However, a state-dependent drift enters the opti-

mization problem in many scenarios. For instance, if the drift is unob-

servable, it can be estimated with the Kalman–Bucy filter. This leads

to an optimization problem where the drift depends on the currently

observed stock price (e.g. Björk, Davis, & Landén, 2010). The drift is

also state-dependent when contrarian investors optimize portfolios

under the assumption that prices are mean-reverting; for instance

when an investor is a victim of the Gambler’s fallacy, see, e.g., Shefrin

(2008). Similarly, investors who aim at following market trends will

include a state-dependent drift in optimization.
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In these cases an investor’s optimal trading strategy strongly de-

pends on the forecasting function used to predict asset prices. This

poses a numerically demanding problem. Our paper proposes an ef-

ficient numerical method to solve finite-horizon portfolio optimiza-

tion problems with transaction costs and state-dependent drift. The

method has time-complexity of O(N2.5), where N is the number of

time steps in the discrete approximation of the investment interval.

In contrast, a discrete-time dynamic programming algorithm (see (8)

in Section 3) that directly solves the problem has time-complexity

O(N5). Our method allows us, for instance, to study 40-year invest-

ment horizons with time steps of 4-day length on a basic laptop

computer.

There are several numerical methods for solving the optimiza-

tion problem with a constant drift under transaction costs. Davis,

Panas, and Zariphopoulou (1993) proposes a backward recursive

method which has seen a number of improvements in the past

20 years. For instance, Monoyios (2004) provides an approximation

to the optimal decision in the final period which allows searching

over a smaller range of stock holdings. Zakamouline (2005) proposes

bounds on stock holdings. Another method is to solve the Hamilton–

Jacobi–Bellman (HJB) equations of optimization problems by finite

differences (e.g. Herzog, Kunisch, & Sass, 2013) or to use a genetic

programming algorithm to derive approximations of trading strate-

gies (Lensberg & Schenk-Hoppé, 2013). These algorithms work well

for short time-horizons, typically less than 1 year, and when the

number of periods is small. By proposing a method that works for
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non-constant drift and long time-horizons, our paper fills this gap in

the literature.

The main challenges arising from a state-dependent drift are that

the search for the optimal strategy has to be carried out for all nodes

of a binomial tree, and that the state-dependent strategy results in a

larger range of stock holdings. This increases the likelihood of over-

and underflow arising for the exponential utility function as pointed

out by Clewlow and Hodges (1997). For a constant drift, in contrast,

the optimal strategy is independent of stock prices at time t. One

only needs to search for the optimal strategy at a node at time t, see

Monoyios (2004, p. 902).

To overcome the challenges, we develop a fast numerical method

to approximate the optimal solution well. The approach combines

four aspects: (a) reducing dimensionality, (b) scaling the objective

function, (c) carrying out local searches for optimal trading decisions,

and (d) non-equidistant discretization of the state space.

We apply the numerical method to a study of the true costs of mar-

ket frictions using the indifference principle. The analysis reaps the

full benefit of the approach because measuring these costs requires

taking averages over many realizations of the drift. For each realiza-

tion, one has to calculate trading strategies and carry out Monte Carlo

simulations. In general, a state-dependent drift is observed to make

the strategy more variable than a constant drift. This, in turn, entails

more aggressive trading.

The indifference principle yields the following results.

First, the value of information is measured by comparing realized

utilities of different types of investors. We find that information is

most valuable to the least risk-averse investor. It also turns out that

cautious trend-followers do almost as well as investors who estimate

the drift from observations.

Second, the utility loss due to transaction costs is measured as the

maximum amount of money an investor is willing to pay up front to

avoid transaction costs. The loss is observed to be about twice as large

as the direct expense incurred. Transaction costs are most detrimental

to naive investors (who do not revise their initial estimates of the

drift) when investing over a medium or long time horizon. It implies

that in the long run naive investors are the most active traders and

usually hold wrong beliefs. At short time-horizons, transaction costs

strongly affect the learning investor as his estimate of the drift varies

drastically in the short run.

Third, we examine the impact of the investment time horizon.

The main finding is that, although uncertainty about the true drift

cannot be removed completely, learning about the drift reduces the

loss in utility due to the uncertain drift by 33 percent in 1 year and

by 80 percent in 10 years compared to a naive investor. Learning also

reduces the loss in utility caused by transaction costs by 50 percent

over a 10-year time-horizon.

Section 2 presents the model. The numerical method is explained

in Section 3 and applied in Section 4 to quantify the economic costs

under various assumptions on the state-dependent drift. Section 5

concludes.

2. Model

We consider an investor who maximizes utility from wealth by

trading in a risk-free bond with a constant interest rate r, and a risky

stock. The randomness of the stock price is modelled on a probability

space (�,F ,P) which supports a one-dimensional Brownian motion

(W(t)) and an independent random variable m whose role will be

explained later. The investor assumes that the dynamics of the stock

price S(t) is given by

dS(t) = μ
(
t, S(t)

)
S(t)dt + σ S(t)dW(t), S(0) = S0 (1)

with a constant volatility σ > 0. The function μ(t, S) is a time- and

state-dependent drift of the stock price.

We consider a situation in which the true dynamics of the stock

price is unknown: The actual drift is a random variable m which is

determined at the initial time and fixed over the horizon (recall that it

is independent of the Brownian motion (W(t))). Hence the true price

dynamics is

dS(t) = mS(t)dt + σ S(t)dW(t). (2)

The drift m is not observed by investors with an exception of an

informed investor (a benchmark) who additionally knows the drift m.

If the structure of the price dynamics is known, one can use observed

stock prices to estimate m. Assume throughout the paper that m is

normally distributed with mean μ0 and variance γ0 > 0:

m ∼ N (μ0, γ0).

Then the Kalman–Bucy filter gives that the best estimate of m given

an observation of the stock price trajectory up to time t is

μL(t, S(t)) = γ0σ 2

σ 2 + γ0t

(
μ0

γ0
+ t

2
+ 1

σ 2
log(S(t)/S0)

)
. (3)

This estimate takes the form μ(t, S(t)), and hence entails a dynamics

as defined in (1).

Investors who are not aware of the characteristics of the random

variable m and/or the dynamics (2) make suboptimal decisions. We

consider two types of such investors. The first one is a naive investor

who assumes that the dynamics is given by (2) with m = μ0, i.e.,

μ(t, S(t)) = μ0 in (1). The second type of investor suffers from a be-

havioral bias and estimates the drift as:

μa(t, S(t)) = μ0 + a arctan
(
(μ0 − σ 2/2)t − log(S(t)/S0)

)
. (4)

The second item of (4) characterizes the investor’s adjustment

to his initial estimate μ0. The arctangent function is a symmet-

ric about the origin and increasing function taking values within

(−π/2, π/2) on the domain (−∞, +∞), see, e.g. Luderer, Nollau,

and Vetters (2010, p. 55). The adjustment vanishes when the log-

arithmic return R(t) := log(S(t)/S0) equals (μ0 − σ 2/2)t which was

the expected value E[R(t)] if the drift of the stock price was

a known constant μ0. In this case, it is known that, see, e.g.

Øksendal (2003, p. 64)

R(t) := log(S(t)/S0) = (μ0 − σ 2/2)t + σ W(t).

We refer to the parameter ‘a’ as the investor’s sentiment. It mea-

sures the investor’s confidence in his initial estimate μ0. If the pa-

rameter a is positive then the investor believes that the price will

revert to the predicted mean: A higher than predicted return is fore-

cast to lead to a drift smaller than μ0. The investor’s decision is con-

trarian. It can be interpreted as the result of overconfidence about

the ability to predict the stock price dynamics. If the parameter a

is negative, the investor will revise the initial estimate upwards if

the returns are higher than predicted (resp. downwards if returns

are lower than μ0). The investor is a trend follower; he places more

trust in the market’s view about stock price dynamics than in his

own view.

Definition 2.1. Informed investors observe the realization of the

random drift m at the initial time.

Learning investors use (3) to estimate the realization of the ran-

dom drift m.

Naive investors assume that the drift is constant m = μ0.

Biased investors use (4) as their estimate of the drift.

Trading in the stock incurs proportional transaction costs with

the rate λ ∈ [0, 1). Purchasing y shares costs y(1 + λ)S(t) at time t

while selling y shares brings in y(1 − λ)S(t). It is customary (e.g.
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