
European Journal of Operational Research 243 (2015) 932–943

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Decision Support

Two exact algorithms for the traveling umpire problem

Li Xue a,c, Zhixing Luo b,∗, Andrew Lim b,c

a School of Management, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shaanxi 710049, PR China
b International Center of Management Science and Engineering, School of Management and Engineering, Nanjing University, Nanjing 210093, PR China
c Department of Management Sciences, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Hong Kong

a r t i c l e i n f o

Article history:

Received 21 March 2014

Accepted 22 December 2014

Available online 30 December 2014

Keywords:

Umpire scheduling

Lagrangian relaxation

Column generation

OR in sports

Mathematical model

a b s t r a c t

In this paper, we study the traveling umpire problem (TUP), a difficult combinatorial optimization problem

that is formulated based on the key issues of Major League Baseball. We introduce an arc-flow model and

a set partition model to formulate the problem. Based on these two models, we propose a branch-and-

bound algorithm and a branch-and-price-and-cut algorithm. The branch-and-bound algorithm relies on

lower bounds provided by a Lagrangian relaxation of the arc-flow model, while the branch-and-price-and-

cut algorithm exploits lower bounds from the linear programming relaxation of the set partition model

strengthened by a family of valid inequalities. In the branch-and-price-and-cut algorithm, we design an

efficient label-setting algorithm to solve the pricing problem, and a branching strategy that combines three

different branching rules. The two algorithms are tested on a set of well-known benchmark instances. The

two exact algorithms are both able to rapidly solve instances with 10 teams or less, while the branch-and-

price-and-cut algorithm can solve two instances with 14 teams. This is the first time that instances with 14

teams have been solved to optimality.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The traveling umpire problem (TUP) is a relatively new combinato-

rial optimization problem that originates from Major League Baseball.

Given a double round-robin tournament of 2n teams, in which each

team plays against all of the other teams twice at home and away in

a season of 4n − 2 time slots, the problem requires to determine an

assignment of n umpires to the games in each time slot. Each game

must have one umpire, and each umpire must be assigned to one

game in each time slot. The objective is to minimize the total travel

distance of the umpires. From another point of view, the TUP requires

the design of a set of paths, starting from the first time slot and ending

at the last time slot, that allow the umpires to visit every game exactly

once throughout the season. To capture the most important features

of umpire scheduling in the game, the TUP considers two additional

requirements. The first, referred to as the frequency requirement, for-

bids any umpire to visit the home venue of any team more than once

in any n − d1 consecutive time slots and to see the same team more

than once in any � n
2 � − d2 consecutive time slots, where d1 and d2

are two integer parameters that satisfy 0 ≤ d1 ≤ n − 1 and 0 ≤ d2 ≤
� n

2 � − 1, respectively. The second requirement, referred to as the visit

∗ Corresponding author.

E-mail addresses: xltry1416@gmail.com, 771553487@qq.com (L. Xue),

luozx.hkphd@gmail.com, luozhx@cityu.edu.hk (Z. Luo), lim.andrew@cityu.edu.hk

(A. Lim).

requirement, enforces each umpire to visit the home venue of every

team at least once throughout the season.

As the TUP is a relatively new problem, few research papers have

addressed it to date. The problem was first introduced by Trick and

Yildiz (2007), and was then further addressed by Trick and Yildiz

(2011). Trick and Yildiz (2011) formulated the problem as an integer

programming (IP) model and a constraint programming model, and

designed a Bender’s cuts guided large neighborhood search heuris-

tic to deal with the problem. To test the models and the proposed

heuristic, Trick and Yildiz (2011) generated a set of benchmark in-

stances where the number of teams ranged from 4 to 32. Their com-

putational results suggested that the TUP was very difficult to solve to

optimality; the commercial IP solver ILOG CPLEX could only exactly

solve instances with 10 teams at most. Moreover, finding a feasible

solution for medium-sized instances was very difficult; both CPLEX

and the large neighborhood search heuristic failed to find any fea-

sible solutions in many medium-sized instances. The background

and applications of the TUP, and the set of benchmark instances

used by Trick and Yildiz (2011), were further explained by Trick,

Yildiz, and Yunes (2012). These benchmark instances are available

at http://mat.tepper.cmu.edu/TUP/. Trick et al. (2012) also proposed

a simple greedy heuristic to generate initial solutions and a simulated

annealing to further improve these initial solutions. Trick and Yildiz

(2012) proposed a genetic algorithm to solve the TUP. In this genetic

algorithm, when two parent solutions were crossed over to generate

offsprings, these offsprings were partially optimized to improve their

http://dx.doi.org/10.1016/j.ejor.2014.12.038

0377-2217/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2014.12.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.12.038&domain=pdf
mailto:xltry1416@gmail.com
mailto: 771553487@qq.com
mailto:luozx.hkphd@gmail.com
mailto: luozhx@cityu.edu.hk
mailto:lim.andrew@cityu.edu.hk
http://mat.tepper.cmu.edu/TUP/
http://dx.doi.org/10.1016/j.ejor.2014.12.038

L. Xue et al. / European Journal of Operational Research 243 (2015) 932–943 933

qualities. This crossover operator is referred to as a locally optimized

crossover. Experiments on the benchmark instances showed that this

genetic algorithm could find better feasible solutions, or feasible so-

lutions for some medium-sized instances, for which no feasible solu-

tion had been found before. de Oliveira, de Souza, and Yunes (2014)

introduced a stronger IP model, based on which they implemented

a relax-and-fix primal heuristic that iteratively solved relaxations of

the IP model and progressively fixed variables until a feasible was

found. Recently, Wauters, Van Malderen, and Vanden Berghe (2014)

introduced a lower bound approach based on problem decomposi-

tion and a local search heuristic, which substantially improved the

best-known lower bounds for many instances and find several new

best feasible solutions, respectively. Toffolo, Van Malderen, Wauters,

and Vanden Berghe (2014) proposed a branch-and-price algorithm,

where a specialized branch-and-bound algorithm with multiple prun-

ing techniques was applied to solve the pricing problem. It success-

fully improved several best-known lower bounds and upper bounds

in the literature. The first complexity analysis on the TUP was con-

ducted by de Oliveira, de Souza, and Yunes (2015).

In this paper, we propose two new IP models for the TUP: an

arc-flow model and a set partition model. These two models use dif-

ferent methods to enforce the frequency requirement and the visit

requirement. The arc-flow model uses an exponential number of con-

straints to eliminate solutions that violate either of the two require-

ments, while the set partition model defines a decision variable with

respect to a path that satisfies both of the two requirements, leading to

an exponential number of variables. The set partition model is further

strengthened by the subset row (SR) inequalities, which were first ap-

plied in the vehicle routing problem (Jepsen, Petersen, Spoorendonk,

& Pisinger, 2008). Although these two models cannot be solved di-

rectly by existing IP solvers (e.g. CPLEX and Lingo), a Lagrangian

relaxation of the arc-flow model and the linear programming (LP)

relaxation of the set partition model yield strong lower bounds. These

lower bounds can be exploited to design effective exact algorithms.

Therefore, we propose a branch-and-bound algorithm based on a

Lagrangian relaxation and a branch-and-price-and-cut algorithm

based on the LP relaxation. The two algorithms were extensively

tested on the benchmark instances proposed by Trick and Yildiz

(2011). Both the branch-and-bound algorithm and the branch-and-

price-and-cut algorithm can rapidly achieve optimal solutions on in-

stances with up to 10 teams. Moreover, the branch-and-price-and-

cut algorithm can solve 2 instances with 14 teams to optimality in 48

hours due to the stronger lower bounds from the LP relaxation. This is

the first time instances with 14 teams have been solved to optimality.

The remainder of this paper is organized as follows. First, we

present the arc-flow model, the set partition model and the SR in-

equalities in Section 2. We describe the branch-and-bound algorithm

in Section 3 and the branch-and-price-and-cut algorithm in Section 4.

Section 5 is devoted to the computational results, and Section 6 con-

cludes the paper with some closing remarks.

2. Mathematical models

Before presenting the two IP models, we introduce some

necessary notations and definitions to simplify our presentation. Let

T = {1, . . . , 2n}, U = {1, . . . , n} and S = {1, . . . , 4n − 2} denote the set

of teams, the set of umpires and the set of time slots in the season,

respectively. Let Gt denote the set of games taking place in time slot

t. Each game in Gt must have an umpire from U, while each umpire

from U must be assigned to one game in Gt . Let di,j (i, j ∈ T) denote

the travel distance between the home venues of team i and team j.

We use a tuple (i, j) to represent the arc between two games, i and j,

which take place in adjacent time slots. Let G = ⋃
t∈S Gt denote the set

of games in the season. For each game g ∈ G, let g− denote the home

team and g+ denote the guest team. Let p = (g1, . . . , gm)t denote a

path that starts from game g1 in Gt and ends at game gm in Gt+m−1.

Let Gp and Ep denote the set of games and the set of arcs in path p,

respectively.

Definition 1. A path p = (g1, . . . , gm)t is complete if t = 1 and m =
4n − 2.

Definition 2. A path p = (g1, . . . , gm)t is infeasible if it satisfies at least

one of the following conditions:

1. there exist two games gi and gj (gi, gj ∈ Gp) such that i − j + 1 ≤
n − d1 and g−

i
= g−

j
;

2. there exist two games gi and gj (gi, gj ∈ Gp) such that i − j + 1 ≤
� n

2 � − d2 and at least one of the following four equations is satis-

fied: g−
i

= g+
j

, g−
i

= g−
j

, g+
i

= g−
j

and g+
i

= g+
j

;

3. p is complete and
⋃

g∈Gp
g− �= T.

The first two conditions correspond to the frequency requirement,

while the third condition corresponds to the visit requirement. A path

that satisfies any one of the above three conditions must violate the

frequency or the visit requirement and therefore cannot exist in any

feasible solutions.

2.1. Arc-flow model

Let P denote the set of infeasible paths. The binary decision variable

xi,j (i ∈ Gt, j ∈ Gt+1, t = 1, . . . , 4n − 3) is set to one if an umpire travels

from game i to game j, and zero otherwise. The arc-flow model can

be formulated as follows:

min
∑

t=1,...,4n−3

∑
i∈Gt

∑
j∈Gt+1

di−,j− xi,j (1)

s.t.
∑
j∈G2

xi,j = 1, ∀ i ∈ G1, (2)

∑
j∈Gt+1

xi,j =
∑

j∈Gt−1

xj,i = 1, ∀ i ∈ Gt, t = 2, . . . , 4n − 3, (3)

∑
j∈G4n−3

xj,i = 1, ∀ i ∈ G4n−2, (4)

∑
(i,j)∈Ep

xi,j ≤ |Ep| − 1, ∀ p ∈ P, (5)

xi,j ∈ {0, 1}, ∀ i ∈ Gt, j ∈ Gt+1, t = 1, . . . , 4n − 3. (6)

Objective (1) minimizes the total travel distance of the umpires.

Constraints (2) and (4) ensure that all of the games in the first and the

last time slot have one umpire. Constraints (3) are the flow conser-

vation constraints for the games from time slot 2 to time slot 4n − 3,

and also ensure that these games have one umpire. Constraints (5)

are the infeasible path elimination constraints, which ensure that all

the paths for the umpires are feasible .

The infeasible path elimination constraints (5) are very weak in

general, especially when the length of an infeasible path becomes

large. We use a technique similar to that used by Kallehauge, Boland,

and Madsen (2007) to strengthen the infeasible path elimination con-

straints. For an infeasible path p = (g1, . . . , gm)t , let Ēp = {(gs, i)| i �=
gs+1, (g1, . . . , gs, i)t be feasible, and s = 1, . . . , m − 1} denote the set

of arcs that can destroy the infeasible path p. Then the infeasible path

constraints (5) can be re-formulated as follows:∑
(i,j)∈Ēp

xi,j ≥ 1, ∀ p ∈ P. (7)

The idea behind (7) is that once at least one arc in Ēp is selected, the

infeasible path p is destroyed. In the rest of the paper, we replace

constraints (5) with constraints (7) as the infeasible path elimination

constraints.

Download English Version:

https://daneshyari.com/en/article/478061

Download Persian Version:

https://daneshyari.com/article/478061

Daneshyari.com

https://daneshyari.com/en/article/478061
https://daneshyari.com/article/478061
https://daneshyari.com

