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a b s t r a c t

The Biobjective Shortest Path Problem (BSP) is the problem of finding (one-to-one) paths from a start node

to an end node, while simultaneously minimizing two (conflicting) objective functions. We present an exact

recursive method based on implicit enumeration that aggressively prunes dominated solutions. Our approach

compares favorably against a top-performer algorithm on two large testbeds from the literature and efficiently

solves the BSP on large-scale networks with up to 1.2 million nodes and 2.8 million arcs. Additionally, we

describe how the algorithm can be extended to handle more than two objectives and prove the concept on

networks with up to 10 objectives.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a directed graph G = (N ,A) where N = {v1, . . . ,

vi, . . . , vn} is the set of nodes and A = {(i, j)|vi ∈ N , vj ∈ N } is the

set of arcs. For all arcs (i, j) ∈ A let there be two nonnegative weights

denoted by cij and tij. Henceforth, and without loss of generality, we

refer to cij and tij as the cost and time of traversing arc (i, j) ∈ A, re-

spectively. The Biobjective Shortest Path Problem (BSP) is the problem

of finding paths P from the start node vs ∈ N to the end node ve ∈ N
that minimize two different (often conflicting) objective functions.

The BSP can be formally defined as follows:

min z(x) = (c(x), t(x)) (1)

s.t.,

x ∈ X (2)

where x is a path P represented by a vector of (binary) arc flows xij,

(i, j) ∈ A; c(x) �
∑

(i,j)∈A cijxij is the cost of path x; t(x) �
∑

(i,j)∈A tijxij

is the time of path x; and X is the set of all paths from vs to ve. In (1)

we (simultaneously) minimize the cost and time components of the

vector function z(x). Since the existence of a path that simultaneously

minimizes both objectives in (1) cannot be guaranteed, alternatively

we seek for a set of paths with an acceptable tradeoff between the
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two objectives. Henceforth, we use functions c(·)and t(·) to represent

the cost and time for complete solutions (i.e., a path P from vs to

ve) or partial solutions (i.e., a path P from vs to a certain node vi),

respectively.

This work aims to expand the body of knowledge of exact meth-

ods for the BSP. Our work shares its intuition with the pulse algorithm

proposed by Lozano and Medaglia (2013) for the Constrained Shortest

Path Problem (CSP), which has been successfully used as an algorith-

mic block for the multi-activity shift scheduling problem (Restrepo,

Lozano, & Medaglia, 2012) and has been extended to the weight con-

strained shortest path problem with replenishment (Bolívar, Lozano,

& Medaglia, 2014). To emphasize the fact that this work is an exten-

sion of a flexible solution framework, we purposely keep the pulse

name in this paper.

The rest of the paper is organized as follows. Section 2 introduces

relevant concepts for the BSP. Section 3 presents a literature review

of the main solution strategies for the BSP. Section 4 introduces the

pulse algorithm and the intuition behind it. Section 5 presents the

core components of the algorithm. Section 6 compares the proposed

algorithm against a top-performer algorithm by Raith (2010). Finally,

Section 7 concludes the paper and outlines future work.

2. Basic concepts

This section introduces relevant concepts related to the biobjective

shortest path problem. Let us recall thatX is the set of all paths x from

vs to ve. The image of any solution x ∈ X on the objective space Z is a
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vector denoted by z(x) = (c(x), t(x)) ∈ Z , where c(x) and t(x) are the

values of each objective function (cost and time, respectively).

In the BSP, we look for a set of solutions that cannot improve

one component of the objective vector z(x)without deteriorating the

other one. These solutions are referred to as efficient solutions and are

formally defined as follows:

Definition 2.1. A solution x ∈ X is efficient if there does not ex-

ist another solution x′ ∈ X such that c(x′) < c(x) and t(x′) ≤ t(x) or

c(x′) ≤ c(x) and t(x′) < t(x).

Efficient solutions could be either supported or non-supported. Sup-

ported solutions correspond to the optimal solutions of the mono-

objective shortest path problem defined by the following linear (con-

vex) combination of the objectives:

min
x∈X

λcc(x)+ λtt(x) (3)

where (λc, λt) ∈ � are the weights given to the cost and time within

the weight set � = {(λc, λt) ∈ �2|λc ≥ 0, λt ≥ 0, λc + λt = 1}. On the

other hand, efficient solutions which are non-supported cannot be

obtained by solving a shortest path problem with a weighted sum of

the objectives as in (3).

Similar to the efficiency concept defined over the solution space,

any given solution has a corresponding vector (point) in the objective

space Z that can be either dominated or non-dominated. The following

set of definitions clearly states the concepts of dominance and their

relation with efficiency.

Definition 2.2. The image z(x) of an efficient solution x is said to

be a non-dominated vector. If the solution is not efficient, then its

image is a dominated vector in the objective space. The set of all

non-dominated vectors is denoted by ZN .

Definition 2.3. Let x, x′ ∈ X be two solutions representing feasible

paths. If c(x′) < c(x) and t(x′) ≤ t(x) or c(x′) ≤ c(x) and t(x′) < t(x),
then z(x) is said to be dominated by z(x′), and it is denoted by z(x′) 	
z(x).

Definition 2.4. Let x, x′ ∈ X be two solutions representing feasible,

but different paths (x′ 
= x). If c(x′) = c(x)and t(x′) = t(x), then x′ and

x are said to be alternative paths.

Definition 2.5. The set of all efficient solutions XE is called the true

efficient set. Given an algorithm, the set of efficient solutions dis-

covered so far at any given iteration is called the online efficient set

and it is denoted by X̂E. If the algorithm is exact, once it meets its

stopping criterion, X̂E coincides with XE. We also make the distinction

between the online set of non-dominated vectors ẐN and the true

non-dominated set ZN .

3. Literature review

The BSP arises naturally on multiple real applications. In telecom-

munications, Clímaco and Pascoal (2012) presented network routing

problems where it is necessary to find paths that minimize the to-

tal number of links while simultaneously minimize the bandwidth

consumption. Pallotino and Scutellà (1998) stated that transporta-

tion problems often offer a tradeoff between two or more objectives,

e.g., minimizing the arrival time to a final destination and the cost of

the path. Müller-Hannemann and Weihe (2006) reported a railway

routing problem that faces a compromise between monetary cost and

travel time. Ehrgott, Wang, Raith, and Van Houtte (2012) presented

a biobjective cyclist route choice model in which bike routes are de-

signed based on the travel time and a suitability weight associated

with each arc. Erkut and Verter (1998) presented a real-world haz-

mat transportation application, where the conflicting objectives are

the path risk (i.e., probability of an accident) and its associated cost.

Aside from its direct application, the BSP arises as a subproblem of

combinatorial optimization models (Skriver & Andersen, 2000). In all

the cases cited above, it is necessary to find a set of solutions that

takes into account more than one objective simultaneously, rather

than to find a single solution that focuses on a single objective.

Aside from its practical relevance, the BSP is also a challenging

problem that is NP-hard (Serafini, 1986). Even though several re-

searchers have proposed different methods for solving the BSP, there

are two major solution strategies for the BSP: dynamic programming

(DP) and ranking.

In the DP category, there are label correcting and label setting

methods. Hansen (1980) and Martins (1984) were among the first

authors who proposed a labeling approach for the BSP. The label cor-

recting method is a straightforward extension of the mono-objective

version (cf. Bertsekas, 1998), but with several labels at each node

(Raith & Ehrgott, 2009). To find the efficient set of solutions, each

node stores labels that represent tentative efficient paths. At the be-

ginning, only the start node vs is labeled. All labels at each node are

extended through all the outgoing arcs, setting new labels over target

nodes. When the label set of a node changes, the node is marked for

reconsideration. When a node is reconsidered, all the dominated la-

bels are deleted and the rest are extended. When the reconsideration

heap is empty the algorithm finishes. Skriver and Andersen (2000)

presented a label correcting algorithm that employs a node selection

criterion for the reconsideration heap. Other versions, as the one pre-

sented by Guerriero and Musmanno (2001), employ a label selection

criterion for the reconsideration heap. The label setting method works

in a similar fashion. These algorithms always employ a label selection

criterion and the main difference with label correcting is that only

the selected label is extended through all the arcs. Raith and Ehrgott

(2009) implemented a label setting algorithm using a binary heap for

the labels storage. In this algorithm, the smallest lexicographically or-

dered label is selected from all nodes to be extended at each iteration.

The extended label is compared with the labels at the target node of

each arc and dominated labels are deleted. Several speedup strate-

gies for DP approaches have been developed recently. Raith (2010)

proposed bounded label correcting and setting algorithms. These

bounded versions use the labels at the end node for the dominance

test at each node (in addition to the node’s own labels). Iori, Martello,

and Pretolani (2010) presented a label setting policy that treats labels

according to an aggregate function calculated for each label. Demeyer,

Goedgebeur, Audenaert, Pickavet, and Demeester (2013) used the

same idea of a bounded labeling algorithm (Raith, 2010) in a uni-

directional/bidirectional label setting algorithm. The bidirectional DP

extends labels forward from the start node and backward from the end

node. When forward and backward labels reach the same node, the la-

bels are combined and added into the online non-dominated set. Both

searches are aborted as soon as the there are no forward nor back-

ward labels dominating solutions of the online non-dominated set

(i.e., there are no promising labels to extend). Even though Demeyer

et al. (2013) reported speedups of the bidirectional DP over the uni-

directional version on the common testbed instances used by Raith

(2010) and Demeyer et al. (2013), computational times are better for

the labeling approach of Raith (2010). Müller-Hannemann and Schnee

(2007) and Disser, Müller-Hannemann, and Schnee (2008) also pro-

posed speedup techniques for DP algorithms that exploit particular

characteristics of time-dependent networks used in railroad routing.

In the ranking category, the near shortest path (NSP) method finds

all the paths within a certain deviation from the shortest path length

found by solving the weighted sum problem associated with the BSP.

Carlyle and Wood (2005) presented a method that, besides its re-

markable performance for solving the near shortest path problem,

it outperforms other specialized algorithms solving the k-shortest

path problem. Raith and Ehrgott (2009) compared different solution

strategies including label setting and label correcting approaches, the

near shortest path method, and a two-phase method based on the
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