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a b s t r a c t

In this paper, we consider an assemble-to-order manufacturing system producing a single end product,

assembled from n components, and serving an after sales market for individual components. Components

are produced in a make-to-stock fashion, one unit at a time, on independent production facilities. Production

times are exponentially distributed with finite production rates. The components are stocked ahead of demand

and therefore incur a holding cost rate per unit. Demand for the end product as well as for the individual

components occurs continuously over time according to independent Poisson streams. In order to characterize

the optimal production and inventory rationing policies, we formulate such a problem using a Markov decision

process framework. In particular, we show that the optimal component production policy is a state-dependent

base-stock policy. We also show that the optimal component inventory rationing policy is a rationing policy

with state-dependent rationing levels. Recognizing that such a policy is generally not only difficult to obtain

numerically but also is difficult to implement in practice, we propose three heuristic policies that are easier

to implement in practice. We show that two of these heuristics are highly efficient compared to the optimal

policy. In particular, we show that one of the two heuristics strikes a balance between high efficiency and

computational effort and thus can be used as an effective substitute of the optimal policy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Assemble-to-order (ATO) production is a common manufacturing

practice used by many firms. It allows a firm to shorten its response

time to its customers by stocking inventory of components ahead

of demand while delaying the assembly of the end products until

demand materializes. Such a practice is especially common for sys-

tems where component production lead-times are much significant

compared to the assembly time of the end product. Examples of ATO

systems include Dell with its online ordering segment as well as the

build-to-order strategies of companies such as Toyota, General Mo-

tors and BMW, to cite a few. ATO strategies are also used in systems

where demand is correlated across several products. Examples in-

clude retailers that sell bundled items, order fulfillment at e-retailers,

and mail order catalogs.

In this paper, we consider the optimal production and inventory

allocation policy for an ATO system facing demand for its end product

as well as its individual components. Several manufacturing systems

operate under this setting such as white goods manufacturers who

not only sell end products such as dish washers, ranges and refriger-
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ators but also sell individual components as spare or repair parts to

support their after sales market. According to Cohen et al. (2006), the

after sales market is a significant revenue generator, especially in the

auto manufacturing and white goods industries, averaging 45 percent

of gross profits. As such, managing a system facing demand for both

the end product and its individual components becomes an important

task. In particular, a manager of such a system faces two types of de-

cisions: components production decision and components inventory

rationing or allocation decision. Specifically, a manager has to decide

on the number of components to produce and when; and also has to

decide how to allocate components inventory in order to satisfy the

demand for both the end product and the individual components.

The literature on ATO systems is quite extensive and can be broadly

categorized into two classes: one deals with periodic review models

while the other deals with continuous review models. In most of the

literature within the periodic review class there was no attempt to

characterize the optimal operating policy rather the focus was on the

performance evaluation of fixed level base-stock policies; example of

research papers within this class include Hausman, Lee, and Zhang

(1998), De Kok and Visschers (1999), Cheng, Ettl, Lin, and Yao (2002),

Zhang (1997), Agrawal and Cohen (2001), and Frank, Ahn, and Zhang

(2004). Research within the continuous review literature class is also

split into two classes: one class deals with pure inventory systems

in which components lead-times are assumed to be exogenous and

where the system is modeled as a set of queues with infinite servers

http://dx.doi.org/10.1016/j.ejor.2014.10.055
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and correlated arrivals; while the second class deals with systems

where components lead-times are assumed to be load-dependent and

the system is viewed as a set of finite capacity queues with correlated

arrivals. These systems involve making decisions about both produc-

tion and inventory levels of components. Papers within the continu-

ous review category include the work of Song (1998), Song and Yao

(2002), Gallien and Wein (2001), Glasserman and Wang (1998), Song,

Xu, and Liu (1999), Dayanik, Song, and Xu (2003), Zhao (2009), Lu,

Song, and Yao (2010) and the references therein. An extensive review

of the ATO literature is provided by Song and Zipkin (2003, chap. 13).

Our paper fits the literature on ATO systems within the contin-

uous review category. However, in our case, we model our problem

using an integrated production and inventory control framework and

focus on characterizing the optimal policy. Papers dealing with opti-

mal control of integrated production and inventory systems include

Ha (1997a, 1997b) and De Véricourt, Karaesmen, and Dallery (2002).

These papers dealt with a single product system with multiple de-

mand classes with either the demand being lost if not fulfilled imme-

diately or backordered. The work in this paper is close to the work

of Song et al. (1999) who studied a multi-component multi-product

integrated production and inventory system where components’ in-

ventory is controlled via independent base stock levels, the work of

Benjaafar and Elhafsi (2006) who studied a single-product ATO sys-

tem with multiple demand classes, the work of Elhafsi (2009) who

extended Benjaafar and Elhafsi (2006) to the case of compound de-

mands, the work of Benjaafar, ElHafsi, Lee, and Zhou (2011) who

studied a general assembly system, and the work of Ceryan, Duenyas,

and Koren (2012) who studied a two-stage assembly system with

intermediate components demand.

In particular, we consider an ATO system producing a single end

product subject to demand for both the end product and individ-

ual components. Any demand, whether for the end product or the

individual components, that cannot be fulfilled immediately is back-

ordered and satisfied later when stock is available. This assumption

usually reflects systems where there are contractual agreements be-

tween the manufacturer and the retailer(s) where the demand has to

be satisfied (by the manufacturer) sooner or later. Since the parts are

exclusively used (after sale) to repair or replace defective components

of the end product, customers have no choice but to obtain the parts

from the same manufacturer. Hence, in case the manufacturer cannot

satisfy the demand immediately, these customers have to wait until

components are available again, leading to backordered demand. As

we show in the paper, such ATO system involves a sophisticated and

challenging mathematical formulation requiring a much larger num-

ber of properties that are needed to characterize the optimal policy

compared to the relevant literature. Our main contributions, in this

paper, consist of the following: because the optimality equation turns

out to be very complex, we first show that the optimal value func-

tion satisfies a set of preliminary properties. Such properties allow

a great simplification of the optimality equation resulting in a ma-

jor improvement in the execution of the value iteration algorithms

used to numerically obtain the optimal policy. A second set of prop-

erties is then used to fully characterize the optimal policy structure.

The heuristics we propose in this paper, although in the same spirit

as those in Benjaafar and Elhafsi (2006), are more sophisticated and

efficient. In particular, we decompose the ATO problem into single-

component problems that are easier to solve individually which we

then link through a correction term to account for demand corre-

lations. We do this by approximating the distribution of the back-

order level of the end product in the original n-component system

through the use of the distribution of the components inventory level

in the single-component system. Such distributions are obtained us-

ing effective matrix geometric techniques. This methodology results

in performances within 2 percent of the optimal cost, for two of the

proposed heuristics, for a very large number of randomly generated

problems.

The rest of the paper is organized as follows. In Section 2, we

formulate the problem using a Markov Decision Process (MDP)

framework. In Section 3, we characterize the structure of the optimal

Policy. In Section 4, we propose three heuristic policies and compare

their performance against the optimal policy. We conclude the paper

with future research directions in Section 5.

2. The mathematical model

We consider a system with similar characteristics as those in Song

et al. (1999), Dayanik et al. (2003), and Benjaafar and Elhafsi (2006).

Similar to these papers, we assume that demand forms a Poisson pro-

cess, assembly is instantaneous, and components are produced on

separate single-server production facilities with exponentially dis-

tributed production times. The assumption of instantaneous assem-

bly is in part motivated by the fact that production or procurement

leadtimes are much longer relative to the assembly time. For example,

this is the case for Dell where electronic components take months to

procure while order processing and assembly takes only few hours.

We consider a system consisting of component production as well

as final assembly of a single end product. Components are indepen-

dently produced, in a make-to-stock fashion in anticipation of future

demand, on separate production facilities one unit at a time. Produc-

tion time of components is assumed exponentially distributed with

rate μk units per unit of time. Assembly time of the end product is

assumed negligible compared to the production times of individual

components. Similar to other papers that treat ATO systems, this as-

sumption is a natural one as is typical for these systems to have very

long component production or procurement lead times compared to

the actual assembly time of the end product. The demand for the

end product occurs continuously, over time, according to an indepen-

dent Poisson stream with rate λ. In addition, the system is subject to

demand for individual components which occur continuously, over

time, according to independent Poisson streams with rate λk for com-

ponent k (k = 1, . . . , n). If demand cannot be satisfied immediately

(whether it is for the end product or it is for a component), it is back-

ordered. Completed units of Component k are either placed in stock

or used to reduce backorders of Component k (if any) or assembled

with other components (if available) to produce a unit of the end

product to satisfy its backorder (if any). In this situation, the system

manager is faced with two decisions: a production decision and an

inventory allocation decision. The manager must decide when to pro-

duce Component k and when to idle its production facility if there

is too much stock of the component in order to reduce the inven-

tory carrying charge. On the other hand, the manager should produce

Component k when the stock level is low to avoid large penalties due

to backorders of either the end product or Component k or both. Also,

when demand for Component k occurs, and if stock for Component

k is available, the system manager must decide whether to satisfy it

or backorder it in order to reserve inventory for the end product and

avoid larger future backorder penalties of the latter. Hence, a problem

of inventory rationing arises.

Since it is conceivable that the system may not immediately satisfy

a demand for a component in order to save stock for future demand

of the end product, it is possible to have stock and backorder for a

component at the same time. Hence, one needs to keep track of both

inventory and backorder for all components. Since the end product

is assembled instantaneously, we only need to keep track of its num-

ber of units that are backordered. Therefore, we define the state of

the system by the 2n + 1 dimensional vector (X(t), Y(t), Z(t)), where

X(t) = (X1(t), . . . , Xn(t)) and Y(t) = (Y1(t), . . . , Yn(t)). Here, Xk(t) and

Yk(t)are non-negative integers denoting the inventory and backorder

level, respectively, of Component k at time t. Z(t) denotes the backo-

rder level of the end product. Hence, the state space, S, is the Cartesian

product (Z+)2n+1 where Z+ denotes the set of non-negative integers.

Let hk denote the per unit inventory holding cost rate of Component
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