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a b s t r a c t

The buffer allocation problem consists of a dynamical description of the underlying production process

combined with stochastic processing times. The aim is to find optimal buffer sizes averaged over several

samples. Starting from a time-discrete recursion we derive a time-continuous model supplemented with

a stochastic process. The new model is used for simulation and optimization purposes as well. Numerical

experiments show the efficiency of our approach compared to other optimization techniques.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Production systems are organized in a way that the best possi-

ble output is reached and storage costs are minimized. However, this

objective is usually influenced by external factors such as fluctuat-

ing demands, supply bottlenecks or individual product specifications.

In most instances, the overall goal is to minimize the total buffer

load, where the production dynamics is induced by processing order

inequalities and restrictions on the system capacities. Typical appli-

cations we think of include the motor vehicle industry in the case of

automotive parts as well as other kinds of processing industries.

Mathematical models provide a powerful tool to study and ana-

lyze production systems. Especially in the case of the buffer allocation

problem, see Alfieri and Matta (2012), Burman (1995), Dallery and

Gershwin (1992), Demir, Tunali, and Eliiyi (2014), Dolgui, Eremeev,

Kovalyov, and Sigaev (2013), Gershwin (1987), Gershwin and Schor

(2000), Gershwin and Tan (2009, 2010), Gürkan (2000), Helber,

Schimmelpfeng, Stolletz, and Lagershausen (2011), Matta (2008), and

Tan and Yeralan (1997) for an overview. One can basically distinguish

between discrete and continuous models. Discrete models are char-

acterized by discrete time periods and work pieces while continuous

models instead rely on continuous time and approximate quanti-

ties, see e.g. Armbruster, Degond, and Ringhofer (2006), Degond and

Ringhofer (2007), Göttlich, Herty, and Klar (2006), Göttlich, Herty, and

Ringhofer (2010). In this paper, we focus on a model connecting these

two perspectives from a numerical point of view.

In Section 2, a discrete time recursion formula is introduced which

can be used for the tracking of individual work pieces through a
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production system, also called discrete event simulation (DES). The

work pieces have particular processing times which are randomly

distributed. Evaluation measures help to determine buffer loads and

the current work in progress (WIP). The goal is to minimize the total

buffer size in the production system. The resulting optimization prob-

lem can be exactly reformulated as a mixed integer linear program

(MIP), and as illustrated in Matta (2008), Stolletz and Weiss (2013),

and Weiss and Stolletz (2013), there is a strong need for adapted so-

lution methods to tackle the underlying MIP—even for smaller test

cases. Optimization techniques such as Benders decomposition must

be applied to solve the models within an acceptable time frame. In

further literature, the classical buffer allocation problem (cf. Demir

et al., 2014 and the references therein) is based on a similar idea

leading to a NP-hard combinatorial optimization problem. Without

additional heuristics there is nearly no chance to deal with large-scale

problems.

Another modeling approach, also implying a different optimiza-

tion as indicated in Fig. 1, will be our major concern. It is well known

that discrete event models provide the most accurate description of

the underlying dynamics for simulation purposes. However, it is a

microscopic model, meaning that the computation times highly de-

pend on the number of work pieces to be considered. An optimization

problem based on such a model at first leads to simulation-based opti-

mization procedures only and is usually extremely costly, see Göttlich

et al. (2006). In order to derive a suitable optimization framework, one

can introduce an associated mixed integer linear program. Although

this program is still dependent on individual parts, the optimization

can be done in a well-defined way using common Branch and Bound

algorithms. At best, global optimality can be reached.

Within this article we are interested in models on a macroscopic

scale, or more precisely, we rigorously derive a continuous model

which avoids the dependence on single parts and discrete options
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Fig. 1. Connection between existing models and the presented approach.

for the buffer capacities. The benefit of such a continuous model is

that it can be used for fast simulation and also optimization. For the

optimization we apply nonlinear methods leading to qualitatively

very good results close to the mixed integer solution.

The paper is organized as follows: First, based on the discrete

time recursion described in Section 2, we formally derive a time-

continuous model in Section 4 and also describe its numerical treat-

ment (Section 5.1). Then, using nonlinear optimization techniques as

in Göttlich, Kolb, and Kühn (2014), Kirchner, Herty, Göttlich, and Klar

(2006), Kolb (2011), and Kolb and Lang (2012), we are able to solve

the reformulated problem by a gradient method (cf. Section 5.2). The

quality of the results is very promising as pointed out in Section 6.

2. Discrete model

In this section, we start with the description of a time discrete

model called discrete event simulation that is suitable for evaluating

queuing systems. Similar approaches can be found in Armbruster et al.

(2006), Stolletz and Weiss (2013), and Weiss and Stolletz (2013).

We consider a queuing network with K consecutive processors,

each of them with a queue of size Cm (m ∈ {1, . . . , K}) in front, see

Fig. 2. The times Tm,n needed by processor m to process piece n

(n ∈ {1, . . . , N}) follow a processor dependent random distribution

and will be sampled accordingly. Note that for the evaluation and

the comparison of all presented models (Sections 2–4), we always

consider several samples of processing times Tm,n in the numerical

results in Section 6, but the same samples will be used for all models.

Transport times between different processors are neglected and so

the work pieces are directly fed into the next production unit.

The main ingredient of a time recursion is the modeling of effects

such as free flow, starving and blocking. Let τm,n be the arrival time of

piece n at the queue of processor m. Assuming all pieces are processed

as fast as possible, the arrival times of the considered production line

read

τm,n = max{max{τm,n−1, τm−1,n} + Tm−1,n, τm+1,n−(Cm+1)}. (1)

The first term,

max{τm,n−1, τm−1,n} + Tm−1,n,

results from the fact that piece n cannot be started being processed

at processor m − 1 before the preceding piece n − 1 has left processor

m − 1 and therewith arrived at (the queue) of processor m at time

τm,n−1 (free flow) and not earlier than the arrival time τm−1,n of piece

n at processor m − 1 (starving). The second term in (1) ensures that

if there is enough space in the queue in front of processor m (at least

piece n − (Cm + 1) has been processed, yielding a free slot), the piece

n can be processed directly, otherwise it will be stopped (blocking).

For given initial conditions τ1,n (arrival times at the first processor),

processing times Tm,n and queue sizes Cm, a simulation/evaluation of

the arrival times τm,n (m ∈ {2, . . . , K + 1}, n ∈ {1, . . . N}) can be done

based on (1) (with τm,n = −∞ if n ≤ 0 or m > K + 1). Here, we typi-

cally assume τ1,n = 0 and C1 = CK+1 = ∞. Note that we also consider

τK+1,n, as the time when piece n leaves the last processor.

In a next step, cf. Armbruster et al. (2006) and Göttlich et al. (2006),

evaluation measures are needed to identify the quantities flux and

WIP. Mathematically, we introduce the concept of curves of cumula-

tive counts using the Heaviside function H(·). Then, with

H(x) =
{

1 x ≥ 0

0 x < 0

we denote by

Um(t) =
N∑

n=1

H(t − τm,n)

the number of pieces having arrived at (the queue of) processor m

until time t. Further, we define the flux

Fm(t) = d

dt
Um(t) =

N∑
n=1

δ(t − τm,n),

where δ is the Dirac delta function (derivative of the Heaviside func-

tion in a distributional sense), and the WIP

Wm(t) = Um(t)− Um+1(t)+ Wm,0

with initial conditions Wm,0. Obviously,

d

dt
Wm(t) = Fm(t)− Fm+1(t) (2)

holds. Due to the limited queue size Cm in front of processor m, the

following constraint must be satisfied for the WIP:

0 ≤ Wm(t) ≤ Cm + 1. (3)

The WIP is limited by Cm + 1 because Cm pieces may be waiting in the

queue and one can be currently processed.

3. MIP approach

The discrete model described in Section 2 can be modeled within

a linear MIP (cf. Matta, 2008; Weiss & Stolletz, 2013). Transferred to

our notation (regarding names of the variables and also indexing), the

relevant constraints within the MIP formulation are

τ1,n = 0 n ∈ {1, . . . , N}, (4)

τm,n ≥ τm,n−1 + Tm−1,n m ∈ {2, . . . , K + 1}, n ∈ {1, . . . , N}, (5)

τm,n ≥ τm−1,n + Tm−1,n m ∈ {2, . . . , K + 1}, n ∈ {1, . . . , N}, (6)

τm−1,n

Cm−1 . . . 2 1 m − 1

Tm−1,n

τm,n

Cm . . . 2 1 m

Tm,n

Fig. 2. A serial production line.



Download English Version:

https://daneshyari.com/en/article/478085

Download Persian Version:

https://daneshyari.com/article/478085

Daneshyari.com

https://daneshyari.com/en/article/478085
https://daneshyari.com/article/478085
https://daneshyari.com

