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a b s t r a c t

We consider a simple and altruistic multiagent system in which the agents are eager to perform a collective

task but where their real engagement depends on the willingness to perform the task of other influential

agents. We model this scenario by an influence game, a cooperative simple game in which a team (or coali-

tion) of players succeeds if it is able to convince enough agents to participate in the task (to vote in favor

of a decision). We take the linear threshold model as the influence model. We show first the expressiveness

of influence games showing that they capture the class of simple games. Then we characterize the compu-

tational complexity of various problems on influence games, including measures (length and width), values

(Shapley–Shubik and Banzhaf) and properties (of teams and players). Finally, we analyze those problems for

some particular extremal cases, with respect to the propagation of influence, showing tighter complexity

characterizations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cooperation towards task execution when tasks cannot be per-

formed by a single agent is one of the fundamental problems in both

social and multiagent systems. There has been a lot of research un-

derstanding collective tasks allocation under different models coming

from cooperative game theory. Under such framework, in general,

cooperation is achieved by splitting the agents into teams so that

each team performs a particular task and the pay-off of the team is

split among the team members. Thus, cooperative game theory pro-

vides the fundamental tools to analyze this context. Among the many

references we point the reader to Wooldridge and Dunne (2004),

Wooldridge and Dunne (2006), Chalkiadakis, Elkind, and Wooldridge

(2011), Monroy and Fernández (2011), Bachrach, Parkes, and Rosen-

schein (2013), and Darmann, Nicosia, Pferschy, and Schauer (2014).

The ways in which people influence each other through their in-

teractions in a social network has received a lot of attention in the

last decade. Social networks have become a huge interdisciplinary
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research area with important links to sociology, economics, epidemi-

ology, computer science, and mathematics (Apt & Markakis, 2011;

Easley & Kleinberg, 2010; Hellmann & Staudigl, 2014; Jackson, 2008)

(players face the choice of adopting a specific product or not; users

choose among competing programs from providers of mobile tele-

phones, having the option to adopt more than one product at an extra

cost, etc.). A social network can be represented by a graph where

each node is an agent and each edge represents the degree of influ-

ence of one agent over another one. Several “germs” (ideas, trends,

fashions, ambitions, rules, etc.) can be initiated by one or more agents

and eventually adopted by the system. The mechanism defining how

these germs are propagated within the network, from the influence

of a small set of initially infected nodes, is called a model for influence

spread.

Motivated by viral marketing and other applications the problem

that has been usually studied is the influence maximization problem ini-

tially introduced by Domingos and Richardson (2001) and Richardson

and Domingos (2002) and further developed in Kempe, Kleinberg,

and Tardos (2003) and Even-Dar and Shapira (2011). This problem

addresses the question of finding a set with at most k players hav-

ing maximum influence, and it is NP-hard (Domingos & Richardson,

2001), unless additional restrictions are considered, in which case

some generality of the problem is lost (Richardson & Domingos, 2002).

Two general models for spread of influence were defined in Kempe

et al. (2003): the linear threshold model, suggested by Granovetter

(1978) and Schelling (1978), and the independent cascade model, cre-

ated in the context of marketing by Goldenberg, Libai, and Muller

(2001a) and Goldenberg, Libai, and Muller (2001b). Models for in-

fluence spread in the presence of multiple competing products have
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also been proposed and analyzed (Apt & Markakis, 2011; Bharathi,

Kempe, & Salek, 2007; Borodin, Filmus, & Oren, 2010). In this setting

there is also work done towards analyzing the problem from the point

of view of non-cooperative game theory. Non-cooperative influence

games were defined in 2011 by Irfan and Ortiz (2011). Those games,

however, analyze the strategic behavior of two firms competing on

the social network and differ from our proposal.

We propose to analyze cooperation in multiagent systems based

on a model for influence among the agents in their established net-

work of trust and influence. Social influence is relevant to determine

the global behavior of a social network and thus it can be used to

enforce cooperation by targeting an adequate initial set of agents.

From this point of view we consider a simple and altruistic multi-

agent system in which the agents are eager to perform a collective

task but where their real engagement depends on the perception of

the willingness to perform the task of other influential agents. We

model the scenario by an influence game, a cooperative simple game

in which a team of players (or coalition) succeeds if it is able to con-

vince sufficiently many agents to participate in the task. We take the

deterministic linear threshold model (Apt & Markakis, 2011; Chen,

2009) as the mechanism for influence spread in the associated social

network.

In the considered scenario we adopt the natural point of view of

decision or voting systems, mathematically modeled as simple games

(von Neumann & Morgenstern, 1944). Simple games were first intro-

duced by von Neumann and Morgenstern (1944) as a fundamental

model for social choice. This point of view brings into the analy-

sis several parameters and properties that are relevant in the study

of simple games and thus in the analysis of the proposed scenario.

Among those we consider the length and the width, two fundamen-

tal parameters that are indicators of efficiency for making a decision

(Ramamurthy, 1990), or the Shapley–Shubik value (SSval) and the

Banzhaf value (Bval), which provide a measure of individual influ-

ence. The properties defining proper, strong and decisive games have

been considered in the context of simple game theory from its ori-

gins (Taylor & Zwicker, 1999) and they are also studied. Besides those

properties we also consider equivalence and isomorphism. Together

with properties of the games there are several properties associated

to players that are of interest. Among others we consider the criti-

cal players which were used at least since 1965 by Banzhaf (1965).

We refer the reader to Taylor and Zwicker (1999) for a more detailed

motivation of the viewpoint of simple games and to Aziz (2009) and

Chalkiadakis et al. (2011) for computational aspects of simple games

and in general of cooperative game theory.

To define an influence game we take the spread of influence, in

the linear threshold model, as the value that measures the power of a

team. An influence game is described by an influence graph, modeling

a social network, and a quota, indicating the required minimum num-

ber of agents that have to cooperate to perform the task successfully.

Therefore, a team will be successful, or winning, if it can influence

at least as many individuals as the quota requires. Such an approach

reveals the importance of the influence between some players over

others in order to form successful teams. In this first analysis, we

draw upon the deterministic version of the linear threshold model,

in which node thresholds are fixed, as our model for influence spread

following (Apt & Markakis, 2011; Chen, 2009). It will be of interest to

analyze influence games under other spreading models, in particular

in the linear threshold model with random thresholds.

Our first result concerns the expressiveness of the family of in-

fluence games. We show that unweighted influence games capture

the complete family of simple games. Although the construction can

be computed in polynomial time when the simple game is given in

extensive winning or minimal winning form, the number of winning

or minimal winning coalitions is, in general, exponential in the num-

ber of players. Interestingly enough the formalization as weighted

influence games allows a polynomial time implementation of the

operations of intersection and union of weighted simple games, thus

showing that, in several cases, simple games that do not admit a suc-

cinct representation as weighted games can be represented succinctly

as influence games, because their (co)dimension is small.

Our second set of results settles the complexity of problems re-

lated to parameters and properties. Hardness results are obtained for

unweighted influence games in which the number of agents in the

network is polynomial in the number of players, while polynomial

time algorithms are devised for general influence games. The new

results are summarized in Table 1 as well as the known ones.

We refer the reader to Sections 2 and 4 for a formal definition of

all the representations mentioned in the first row and the problems

in the first column of Table 1. There P (polynomial time solvable), #PC

(#P-complete), NPH (NP-hard), coNPH (coNP-hard), coNPC (coNP-

complete), QP (quasi-polynomial time solvable) and gIso (the class of

problems reducible to graph isomorphism) are known computational

complexity classes (Garey & Johnson, 1979; Papadimitriou, 1994). The

isomorphism problems for simple games, given either by (N,W) or

(N,Wm), are easily shown to be polynomially reducible to the graph

isomorphism problem. For games given by (N,Wm), the Iso problem

and the graph isomorphism problem are equivalent using arguments

from Luks (1999).

Finally, we consider two extreme cases of influence spread in so-

cial networks for undirected and unweighted influence games. In a

maximum influence requirement, agents adopt a behavior only when

all their peers have already adopted it. This is opposed to a mini-

mum influence requirement in which an agent gets convinced when

at least one of its peers does. We show that, in both cases, the prob-

lems IsProper, IsStrong and IsDecisive, as well as computing Width,

have polynomial time algorithms. Computing Length is NP-hard for

maximum influence and polynomial time solvable for minimum in-

fluence. For the case of maximum influence and maximum spread,

or minimum influence we can show that the problems IsDummy and

AreSymmetric belong to P.

2. Definitions and preliminaries

Before introducing formally the family of influence games we need

to define a family of labeled graphs and a process of spread of influence

based on the linear threshold model (Granovetter, 1978; Schelling,

1978). We use standard graph notation following Bollobás (1998).

As usual, given a finite set U, P(U) denotes its power set, and |U|
its cardinality. For any 0 ≤ k ≤ |U|, Pk(U) denotes the subsets of U

with exactly k elements. For a given graph G = (V, E) we assume that

n = |V| and m = |E|. Also G[S] denotes the subgraph induced by S ⊆ V

and, for a vertex u ∈ V , N(u) = {v ∈ V | (u, v) ∈ E}.

Definition 1. An influence graph is a tuple (G, w, f ), where G = (V, E)
is a weighted, labeled and directed graph (without loops). As usual V

is the set of vertices or agents, E is the set of edges and w : E → N is

a weight function. Finally, f : V → N is a labeling function that quan-

tifies how influenceable each agent is. An agent i ∈ V has influence

over another agent j ∈ V if and only if (i, j) ∈ E. We also consider the

family of unweighted influence graphs (G, f ) in which every edge has

weight 1.

Given an influence graph (G, w, f ) and an initial activation set X ⊆
V , the spread of influence of X is the set F(X) ⊆ V which is formed by the

agents activated through an iterative process. We use Fk(X) to denote

the set of nodes activated at step k. Initially, at step 0, only the vertices

in X are activated, that is F0(X) = X. The set of vertices activated at step

i > 0 consists of all vertices for which the total weight of the edges

connecting them to nodes in Fi−1(X)meets or exceeds their labels, i.e.,

Fi(X) = Fi−1(X)∪
{

v ∈ V | ∑
{u∈Fi−1(X)|(u,v)∈E} w((u, v)) ≥ f (v)

}
.

The process stops when no additional activation occurs and the final

set of activated nodes is denoted by F(X).
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