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a b s t r a c t

We address a generalization of the asymmetric Traveling Salesman Problem where routes have to be con-

structed to satisfy customer requests, which either involve the pickup or delivery of a single commodity. A

vehicle is to be routed such that the demand and the supply of the customers is satisfied under the objective

to minimize the total distance traveled. The commodities which are collected from the pickup customers

can be used to accommodate the demand of the delivery customers. In this paper, we present three math-

ematical formulations for this problem class and apply branch-and-cut algorithms to optimally solve the

model formulations. For two of the models we derive Benders cuts based on the classical and the generalized

Benders decomposition. Finally, we analyze the different mathematical formulations and associated solution

approaches on well-known data sets from the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The problem studied in this paper is a generalization of the asym-

metric Traveling Salesman Problem (TSP) in which the set of cus-

tomers is divided into pickup and delivery customers and where the

former supplies and the latter demands one unit of a single commod-

ity. A vehicle is to be routed such that the supply and the demand

of the customers is satisfied while minimizing the total distance

traveled. We refer to this routing problem as one-commodity Full-

Truckload Pickup-and-Delivery Problem (1-FTPDP). The term full-

truckload implies unit capacity and unit supply/demand of the vehicle

and the customers, respectively (Parragh, Doerner, & Hartl, 2008b).

The 1-FTPDP belongs to the class of many-to-many Pickup and Deliv-

ery Problems (PDP) where each unit of a pickup customer can be used

to accommodate the demand of any delivery customer (Berbeglia,

Cordeau, Gribkovskaia, & Laporte, 2007). Besides the exchange of

commodities between customers, the depot has the capacity to fulfill

the customers’ supply and demand. For the sake of simplicity, we as-

sume that the depot has a sufficient number of commodity available

and enough space for commodity storage. Note that this is a gen-

eral assumption in the literature (refer, e.g., to Hernández-Pérez &

Salazar-González, 2004a; Martinovic, Aleksi, & Baumgartner, 2008).
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A real-life application of the 1-FTPDP arises, for example, in

the pre- and end-haulage of intermodal container transportation.

Intermodal container transportation denotes the movement of con-

tainers by two or more transportation modes (rail, maritime, and

road) in a single transport chain, where the change of modes is

performed at bi- and tri-modal terminals (Macharis & Bontekoning,

2004). The route of intermodal transport is namely subdivided into

the pre-, main-, and end-haulage, denoting the route segments from

customer to terminal, terminal to terminal, and terminal to customer,

respectively. The main-haulage generally implies the longest travel-

ing distance and is typically carried out by rail or maritime, whereas

the pre- and end-haulage are handled by trucks to enable door-to-

door transports. The transportation assignments that arise in the pre-

and end-haulage are the movements of fully-loaded containers from

customers to terminals and vice versa. In addition, empty contain-

ers are considered as transportation resources and are provided by

the carrier for freight transportation. The carrier’s objective is to se-

quence the fully-loaded container transportations such that the total

traveling cost is minimized. Furthermore, it is part of the optimiza-

tion to decide where to deliver the empty containers released at the

receiver customers and where to pickup the empty containers for the

shipper customers. This outlined routing problem can be modeled

as a 1-FTPDP, where each receiver customer is regarded as (empty

container) pickup customer and each shipper customer as (empty

container) delivery customer. For further details on the real-life ap-

plication, we refer the reader to Zhang, Yun, and Kopfer (2010) and

Nossack and Pesch (2013).
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The literature on PDPs is quite extensive. Savelsbergh and Sol

(1995), Berbeglia et al. (2007), Parragh, Doerner, and Hartl (2008a),

Parragh et al. (2008b), Pillac, Gendreau, Guéret, and Medaglia (2013),

and Lahyani, Khemakhem, and Semet (2015) provide detailed sur-

veys of the recent literature, as well as classification schemes. We fol-

low Berbeglia et al. (2007) by differentiating between many-to-many,

one-to-many-to-one, and one-to-one PDPs. The most frequently en-

countered PDPs are the ones with a one-to-one structure, where each

commodity has a defined pickup and delivery location. Problems of

this type arise, for example, in courier and door-to-door transporta-

tion (refer, e.g., to Cordeau & Laporte, 2003). In problems with a

one-to-many-to-one relationship, commodities are initially located

at the depots and are delivered to the delivery customers, whereas

the commodities that are picked up at the pickup customers are des-

tined to the depots. Real-world applications arise, for example, in

the delivery of beverages and the collection of empty bottles (refer,

e.g., to Gendreau, Laporte, & Vigo, 1999). The 1-FTPDP belongs to the

class of PDPs with a many-to-many dependency where the supply

of any pickup customer can be accommodated by any other delivery

customer.

The literature on PDPs with a many-to-many relationship is rather

limited and mainly focuses on the single vehicle case. This problem

is denoted in the literature as Pickup-and-Delivery Traveling Sales-

man Problem (PDTSP). If the PDTSP is restricted explicitly to a sin-

gle commodity, it is referred to as 1-PDTSP. Chalasani and Motwani

(1999) address a special case of the 1-PDTSP by considering unit

supply/demand of the customers and finite vehicle capacity. The au-

thors call this problem Q-delivery TSP (Q denotes the vehicle capac-

ity). They propose a 9.5-approximation algorithm for Q ∈ R
+ and a

2-approximation algorithm for Q = 1 and Q = ∞. Anily and Bramel

(1999) present a (7 − 3/Q)-approximation algorithm for the same

problem with Q ∈ R
+ and refer to it as Capacitated Traveling Salesman

Problem with Pickups and Deliveries. Hernández-Pérez and Salazar-

González (2004a) develop a branch-and-cut algorithm using Benders

decomposition to optimally solve instances of the 1-PDTSP. The au-

thors consider real-valued supply/demand and finite vehicle capac-

ity. Wang and Lim (2006) propose polynomial time algorithms for

the same problem with unit supply/demand on a path and a tree

graph topology. Hernández-Pérez and Salazar-González (2004b) sug-

gest two heuristics for the 1-PDTSP with real-valued supply/demand

and finite vehicle capacity. One heuristic is based on a nearest neigh-

bor and a 2-opt/3-opt approach and the other applies the branch-and-

cut algorithm presented in Hernández-Pérez and Salazar-González

(2004a) on restricted feasible sets. Moreover, Martinovic et al. (2008)

solve instances of the 1-PDTSP by an iterative modified simu-

lated annealing algorithm, Hernández-Pérez, Rodríguez-Martín, and

Salazar-González (2009) by a hybrid GRASP/VND heuristic, Zhao, Li,

Sun, and Mei (2009) by a genetic algorithm, and Hosny and Mumford

(2010) by a VNS/SA approach. The PDTSP with multiple commodities,

unit supply/demand, and unit vehicle capacity has been addressed by

Anily and Hassin (1992). The authors propose a 2.5-approximation

algorithm for this so-called swapping problem. Furthermore, Anily,

Gendreau, and Laporte (1999) address the swapping problem on a

line and propose an exact, polynomial time algorithm.

The considered 1-FTPDP is NP-hard. To verify its computational

complexity, we refer the reader to Anily and Hassin (1992). They

prove the NP-hardness of the swapping problem by showing that

even the simplest problem (namely the 1-FTPDP) is NP-hard.

The key contribution of our work is to present various mathe-

matical formulations for the 1-FTPDP and to analyze their perfor-

mances in a computational study. The nature of the 1-FTPDP points

to decomposition methods in which the problem is partitioned into

a routing and an assignment problem. We propose two so-called in-

tegrated formulations that are suited for decomposition and which

capture the routing and the assignment structure of the 1-FTPDP.

We apply the classical and the generalized Benders decomposition

(Benders, 1962; Geoffrion, 1972) to these integrated formulations and

study their computational performances. Furthermore, we compare

the results to a classical asymmetric TSP formulation.

The remainder of the paper is organized as follows. A detailed

description of the various mathematical formulations are given in

Section 2. Branch-and-cut solution algorithms for the different math-

ematical models are described in Section 3. In Section 4, we sum-

marize the results of our computational study which we conducted

on several instances to assess the computational performance of the

algorithms. Finally, we conclude our research in Section 5.

2. Mathematical formulations for the 1-FTPDP

In the following, we will present different model formulations for

the 1-FTPDP. The following notation is used throughout the paper.

Let 0 denote the depot, CP = {1, . . . , n1} the set of pickup customers,

and CD = {n1 + 1, . . . , n2} the set of delivery customers. Based on the

property that the depot is assumed to provide and receive a sufficient

amount of a given commodity, the depot may either be considered as

pickup or as delivery customer. Hence, to ensure the supply/demand

of the customers, we add an appropriate number of depot duplicates

to the set of pickup/delivery customers.

2.1. Asymmetric TSP formulation

The 1-FTPDP can simply be solved as a classical asymmetric TSP

(refer, e.g., to Dantzig, Fulkerson, & Johnson, 1954). The according

model formulation is thereby defined on a digraph G′ = (V ′, A′), where

V ′ represents the vertex set and A′ the set of directed edges. V ′ consists

of the depot 0, the set of pickup customers CP , and the set of delivery

customers CD. Directed edges (i, j) ∈ A′ are defined between any pair

of vertices i, j ∈ V ′ with i �= j and symbolize vehicle movements. The

traveling distance between any two locations (i, j) ∈ A′ is denoted by

the edge weight c(i, j) ∈ R
+. Note that the traveling distance between

two locations may be different, i.e. c(i, j) �= c(j, i), and edges that corre-

spond to infeasible vehicle movements have edge weight ∞ and are

referred to as infeasible edges. For instance, edges (i, j) ∈ A′ among

pickup customers, i.e., i, j ∈ CP, i �= j, and among delivery customers,

i.e., i, j ∈ CD, i �= j, are infeasible. We incorporate binary decision vari-

ables y′
ij

∈ {0, 1} for each directed edge (i, j) ∈ A′ to denote whether

(y′
ij

= 1) or not (y′
ij

= 0) edge (i, j) is traversed by the vehicle. The TSP

formulation is further denoted by PTSP and is given by the following

model. Moreover, let y′ := (y′
ij
|i, j ∈ V ′, i �= j).

min
∑

(i,j)∈A′
c(i, j) · y′

ij (2.1)

s.t.
∑
j∈V ′
j �=i

y′
ji = 1 ∀i ∈ V ′ (2.2)

∑
j∈V ′
j �=i

y′
ij = 1 ∀i ∈ V ′ (2.3)

∑
i,j∈S
j �=i

y′
ij ≤ |S| − 1 ∀S ⊂ V ′ (2.4)

y′
ij ∈ {0, 1} ∀i, j ∈ V ′, i �= j (2.5)

Objective function (2.1) minimizes the total traveling distance.

Constraints (2.2) and (2.3) ensure that each pickup customer and each

delivery customer, as well as the depot is entered and left exactly once.

Constraints (2.4) are the classical subtour elimination constraints that

impose route connectivity. Finally, constraints (2.5) define the do-

mains of the decision variables.
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